
Phase-based Tuning for Better Utilization of
Performance-Asymmetric Multicore Processors

Tyler Sondag and Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA 50011

{sondag,hridesh}@iastate.edu

Abstract—The latest trend towards performance asymmetry
among cores on a single chip of a multicore processor is posing
new challenges. For effective utilization of these performance-
asymmetric multicore processors, code sections of a program
must be assigned to cores such that the resource needs of code
sections closely matches resource availability at the assigned core.
Determining this assignment manually is tedious, error prone,
and significantly complicates software development. To solve this
problem, we contribute a transparent and fully-automatic process
that we call phase-based tuning which adapts an application to
effectively utilize performance-asymmetric multicores. Compared
to the stock Linux scheduler we see a 36% average process
speedup, while maintaining fairness and with negligible over-
heads.

I. INTRODUCTION

Recently both CPU vendors and researchers have advocated
the need for a class of multicore processors called single-
ISA performance-asymmetric multicore processor (AMP) [1]–
[4]. All cores in an AMP support the same instruction set,
however, they differ in terms of performance characteristics
such as clock frequency, cache size, etc [1], [4], [5]. AMPs
have been shown to provide an effective trade-off between
performance, die area, and power consumption compared to
symmetric multicore processors [1]–[4].

A. The Problems and their Importance

Programming AMPs is much harder compared to their
symmetric counterparts. In general, for effective utilization
of AMPs, code sections of a program must be executed on
cores such that the resource requirements of a section closely
match the resources provided by the core [3], [6]. To match
the resource requirements of a code section to the resources
provided by the core, both must be known. The programmer
may manually perform such a mapping, however, this manual
tuning has at least three problems.

1) First, the programmer must know the runtime char-
acteristics of their code as well as the details of the
underlying asymmetry. This increases the burden on the
programmer. Further, both the resource requirements of
processes and the resources provided by cores cannot
be determined statically (code behavior may change
with inputs, core characteristics may change between
different platforms or if the workload on the system
changes [7], [8]). This is troubling since utilization is

heavily influenced by the accuracy of this knowledge [3],
[6], [7].

2) Second, with multiple target AMPs this manual tuning
must be carried out for each AMP, which can be costly,
tedious, and error prone.

3) Third, as a result of this manual tuning a custom version
must be created for each target AMP, which decreases
re-usability and creates a maintenance problem. Further,
the performance asymmetry present in the target AMP
may not be known during development.

Effective utilization of AMPs is a major challenge. Finding
techniques for automatic tuning is critical to address this
challenge and to realize the full potential of AMPs [7].

B. Contributions to the State-of-the-art

The main technical contribution of this work is a novel
program analysis technique, which we call phase-based tun-
ing, for matching resource requirements of code sections to
the resources provided by the cores of an AMP. Phase-based
tuning builds on a well-known insight that programs exhibit
phase behavior [9], [10]. That is, programs goes through
phases of execution that show similar runtime characteristics
compared to other phases [11]. Based on this insight, our
approach has two parts: a static analysis which identifies
likely phase-transition points (where runtime characteristics
are likely to change) between code sections, and a lightweight
dynamic analysis that determines section-to-core assignment
by exploiting a program’s phase behavior.

Phase-based tuning has the following benefits:
• Fully Automatic: Since phase-based tuning determines

core assignments automatically at runtime, the program-
mer need not be aware of the performance characteristics
of the target platform or their application.

• Transparent Deployment: Programs are modified to
contain their own analysis and core switching code.
Thus, no operating system or compiler modification is
needed. Therefore, phase-based tuning can be utilized
with minimal disruption in the build and deployment
chain.

• Tune Once, Run Anywhere: The analysis and instru-
mentation makes no assumptions about the underlying
AMP. Thus there is no need to create multiple versions for
each target AMP. Also, by making no assumptions about



the target AMP, interactions between multiple threads and
processes are automatically handled.

• Negligible Overhead: It incurs less than 4% space
overhead and less than 0.2% time overhead, i.e. it is
useful for overhead conscious software and it is scalable.

• Improved Utilization: Phase-based tuning improves uti-
lization of AMPs by reducing average process time by as
much as 36% while maintaining fairness.

To evaluate the effectiveness of phase-based tuning, we
applied it to workloads constructed from the SPEC CPU 2000
and 2006 benchmark suites which are standard for evaluating
processors, memory and compilers. These workloads consist
of a fixed number of benchmarks running simultaneously. For
these workloads we observed as much as a 36% reduction in
average process time while maintaining fairness and incurring
negligible overheads.

II. PHASE-BASED TUNING

The intuition behind our approach is the following. If we
classify a program’s execution into code sections and group
these sections into clusters such that all sections in the same
cluster are likely to exhibit similar runtime characteristics;
then the actual runtime characteristics of a small number of
representative sections in the cluster are likely to manifest
the behavior of the entire cluster. Thus, the exhibited runtime
characteristics of the representative sections can be used to
determine the match between code sections in the cluster and
cores without analyzing each section in the cluster.

Based on these intuitions, phase-based tuning works as
follows. A static analysis is performed to identify phase-
transition points. This analysis first divides a program’s code
into sections then classifies these sections into one or more
phase types. The idea is that two sections with the same phase
type are likely to exhibit similar runtime characteristics. Third,
we identify points in the program where the control flows [12]
from a section of one phase type to a different phase type.
These points are the phase-transition points.

Each phase-transition point is statically instrumented to
insert a small code fragment which we call a phase mark1.
A phase mark contains information about the phase type for
the current section, code for dynamic performance analysis,
and code for making core switching decisions.

At runtime, the dynamic analysis code in the phase marks
analyzes the actual characteristics of a small number of
representative sections of each phase type. These analysis
results are used to determine a suitable core assignment for
the phase type such that the resources provided by the core
matches the expected resources for sections of that phase
type. On determining a satisfactory assignment for a phase
type, all future phase marks for that phase type reduce to
simply making appropriate core switching decisions2. Thus,

1The idea of phase marking is similar to the work by Lau et al. [13],
however, we do not use a program trace to determine our phase marks and
make our selections based on a different criteria.

2Huang et al. [14] show that basing processor adaptation on code sections
(positional) rather than time (temporal) improves energy reduction techniques.
We also take a positional approach.

the actual characteristics of few sections of a given phase type
are used as an approximation of the expected characteristics
of all sections of that phase type. This allows our technique to
significantly reduce runtime overhead and automatically tackle
new architectures.

A. Static Phase Transition Analysis

The aim of our static analysis is to determine points in
the control-flow where behavior is likely to change, that is
phase-transition points. The precision and the granularity of
identifying such points is likely to determine the performance
gains observed at runtime. To that end, the first step in our
analysis is to detect similarity among basic blocks in the
program and classify them into one or more phase types
that are likely to exhibit similar runtime behavior. We then
examine three analysis techniques to detect and mark phase
transitions with phase marks. The first is a basic block level
analysis. The second builds upon this basic block analysis to
analyze intervals [12]. The third also builds upon the basic
block analysis to analyze loops inter-procedurally.

Fig. 1: Overview of Phase Transition Analysis

Figure 1 illustrates this process for our basic block level
analysis. Step 1 represents the initial procedure. Step 2 finds
the blocks which are larger than the threshold size (shaded).
Next, step 3 finds the type for each block considered in the
previous step. Then, we reduce the phase transition points by
using a lookahead, this is illustrated in step 4. Finally, step
5 shows the new control-flow graph for the procedure which
now includes the phase transition marks.

In this section, we first discuss the analysis techniques for
annotating control-flow graphs (CFGs) with types for both of
our techniques. Next, we discuss how to use the annotated
control-flow graphs to perform the phase transition marking.

1) Static CFG Annotation:
a) Attributed CFG Construction: Our static analysis first

divides a program into procedures (P) and each procedure
p ∈ P into basic blocks to construct the set of basic blocks
(B) [12]. We use the classic definition of a basic block that it
is a section of code that has one entry point and one exit point
with no jumps in between [12]. We then assign a type (π ∈
Π) to each basic block to construct the set of attributed basic
blocks (B̄ ⊆ B × Π). The notion of type here is different



from types in a program and does not necessarily reflect
the concrete runtime behavior of the basic block. Rather it
suggests similarity between expected behaviors of basic blocks
that are given the same type. A strategy for assigning types
to basic blocks statically is given in Section II-A3, however,
other methods for classifying basic blocks can also be used.

CFG construction from a binary representation may be in-
complete. We currently ignore typing unknown targets, which
may introduce some imprecision in the analysis but is safe. If
more precision is desired, a more sophisticated analysis may
be used or information may be gathered from the source code.

Using the attributed basic blocks, attributed intra-procedural
control-flow graphs for procedures are created. An attributed
intra-procedural control-flow graph CFG is 〈N , E , η0〉. Here,
N , the set of control-flow graph nodes is B̄ ∪ S, where
S ranges over special nodes representing system calls and
procedure invocations. The set of directed edges in the control-
flow is defined as E ⊆ N ×N × {b, f}, where b, f represent
backward and forward control-flow edges. η0 ≡ (β, π) is a
special block representing the entry point of the procedure,
where β ∈ B and π ∈ Π.

b) Summarizing Intervals: The goal of our intra-
procedural interval technique is to summarize intervals into a
single type. To that end, for each procedure, we start by parti-
tioning the attributed control-flow graph of the procedure into
a unique set of intervals (I) using standard algorithms [12].
“An interval (i(η) ∈ I) corresponding to a node η ∈ N is
the maximal, single entry subgraph for which η is the entry
node and in which all closed paths contain η [12, pp.6].”
For each i, we then compute its dominant type by doing a
depth-first traversal of the interval starting with the entry node,
while ignoring backward control-flow edges. Throughout this
traversal, a value is computed for each type. Each node has
a weight associated with it (those within cycles are given a
higher weight) which is used for this computation. A detailed
algorithm may be found in our technical report [15].

c) Summarizing Loops: The goal of our inter-procedural
loop analysis is to summarize loops into a single type. We
start with the attributed CFG for each procedure created by
the basic block analysis. We then use the basic block types to
determine loop types. A bottom-up typing is performed with
respect to the call graph. In the case of indirect recursion, we
randomly choose one procedure to analyze first then analyze
all procedures again until a fixpoint is reached.

For each procedure, we start by partitioning the attributed
CFG of the procedure into a unique set of loops (L) using
standard algorithms [16]. For each loop, l ∈ L, we then
compute its dominant type starting with the inner-most loops.
We do a breadth-first traversal of the loop starting with the
entry node, while ignoring backward edges. This algorithm is
shown in Algorithm 1 and illustrated in Figure 2.

Throughout the loop traversal, a type map (M : Π 7→ R) is
maintained which maps types to weights. On visiting a control-
flow node in the loop, η ∈ l, the type map M is changed to
M ′ = M ⊕ {π 7→ M(π) + wn(λ) ∗ ϕ(η)}. Here, π is the
type of the control-flow node η, wn maps nodes to nesting

Fig. 2: Loop Summarization Illustration

level weights, ϕ maps nodes to node weights, and ⊕ is the
overriding operator for finite functions. Since loops are usually
executed multiple times, nodes in nested loops should have
more impact on the type of the overall loop. Thus, nodes which
belong to inner loops are given a higher weight via the function
wn : N→ R which maps nesting levels to weights.

On completion of the breadth-first traversal, the dominant
type of the loop l is πl, where @π s.t. M(π) > M(πl). In case
of a tie, a simple heuristic is used (e.g. number of control-
flow nodes). We also have a type strength, σ which is simply
the weight the type πl over the sum of all other type weights
(M(πl)/

∑
π∈dom(M)M(π)). This strength is used for typing

nested loops.
Suppose we have a loop l′ which contains the current loop l.

If both loops have the same type (πl′ = πl), it is not beneficial
to incur our analysis and optimization code’s overhead at each
iteration of the outer loop. Instead, we perform the analysis
and optimization before the outer loop, and eliminate any work
done inside this loop. Thus, after we determine the type for
the current loop l, we find the type for the next largest nested
loop, l′. If there is no such loop, then we add the current type
information to the loop type map T . If the type of the nested
loop (l′) is the same as the current loop (l), then we add the
current loop, l to the type map and remove the nested loop
l′. If the types of the two loops differ, we take the type with
the higher strength, σ, since it is more likely that we have
an accurate typing for such a loop. Finally, we have a special
condition (else if) to handle nesting where two disjoint loops,
l′ and l′′′, are nested inside a loop, l. In this case, we type the
loop l only if the two disjoint loops, l′ and l′′′, have the same
type which is also the same type as the outer loop l.

As a result of this process, we obtain another control flow
graph of the procedure where nodes are tuples of loops and
their types. To distinguish these from control-flow graphs of
basic blocks, we refer to them as attributed loop graphs.

d) Phase Transitions: Once we have determined types
for sections (blocks, intervals, or loops) of the program’s
CFG, we compute the phase transition points. Recall that a
phase-transition point is a point in the program where runtime
characteristics are likely to change. Since sections of code with



Algorithm 1 : Loop Summarization to Find Dominant
Type. BFS ignores back edges

for all η ∈ BFS(l ∈ L) do
λ :=

∣∣{l′ ∈ L|l′ ⊂ l ∧ η ∈ l′}∣∣
M ⊕ {π 7→M(π) + wn(λ) ∗ ϕ(η)}

end for
M(πl) = maxπ∈dom(M)(M(π))

σl :=M(πl)/
∑
π∈dom(M)M(π)

if ∃l′ s.t. l′ ⊂ l∧ @l′′ s.t. l′ ⊂ l′′ ⊂ l∧ (@l′′′ s.t. l′′′ ⊂ l∧ @l′′ s.t. l′′′ ⊂
l′′ ⊂ l) then

if (l′, πl′ , σl′ ) ∈ T ∧ (πl′ = πl ∨ σl′ < σl) then
T := T ∪ {(l, πl, σl)}
T := T \ {(l′, πl′ , σl′ )}

end if
else if ∃l′ s.t. l′ ⊂ l∧@l′′ s.t. l′ ⊂ l′′ ⊂ l∧(∃l′′′ s.t. l′′′ ⊂ l∧@l′′ s.t. l′′′ ⊂
l′′ ⊂ l) then

if (l′, πl′ , σl′ ) ∈ T ∧ (l′′′, πl′′′ , σl′′′ ) ∈ T ∧ πl′ = πl′′′ ∧ πl′ = πl
then
T := T ∪ {(l, πl, σl)}
T := T \ {(l′, πl′ , σl′ )}
T := T \ {(l′′′, πl′′′ , σl′′′ )}

end if
else
T := T ∪ {(l, πl, σl)}

end if

the same type should have approximately similar behavior, we
assume that program behavior is likely to change when control
flows from one type to another.

2) Phase Transition Marking: Once the phase transitions
are determined, we statically insert phase marks in the binary
to produce a standalone binary with phase information and
dynamic analysis code fragments. These code fragments also
handle the core switching. By instrumenting binaries, we
eliminate the need for compiler modifications. Furthermore,
by using standard techniques for core switching, we require
no OS modification. We have considered several variations of
phase transition marking that are classified into three kinds
based on whether it operates on the attributed control-flow
graphs, the attributed interval graphs, or the attributed loop
graphs. In all cases, phase marks are placed at the phase
transitions.

a) Adding Phase Marks to Attributed CFG: Our first
class of methods all consider a section to be a basic block (β̄)
in the attributed CFG (CFG). The advantage of using basic
blocks is that execution of a single instruction in a block
implies that all instructions in the block will execute (and
the same number of times). This means that the phase type
for the section is likely to be accurate and the same as the
corresponding basic block type π ∈ Π, where β̄ is (β,π). Our
naïve phase marking technique marks all edges in the attribute
CFG where the source and the target sections have different
phase types. As is evident, this technique has a problem.
The average basic block size is small (tens of instructions
in the SPEC benchmarks). Phase marking at this granularity
could result in frequent core switches overshadowing any
performance benefit. To avoid this, we use two techniques.

Our first technique is to skip basic blocks with size below
a configurable threshold. Our second technique (lookahead
based phase marking) is to insert a phase mark only if majority

of the successor of a code section up to a fixed depth have the
same type. The intuition is that if majority of the successors
have the same type, a core switch cost will more likely be
offset by the gains in improving core utilization.

b) Adding Phase Marks to Attributed Interval Graphs:
Our second class of methods consider sections to be intervals
in the attributed interval graph. Using intervals for phase
marking enables us to look at the program at a more coarse
granularity than basic blocks. Even with 1st order interval
graphs, the intervals frequently capture small loops. This is
clearly advantageous for adding phase marks since we do not
want to have a core switch within a small loop because this
would most likely result in far too frequent core switches. The
disadvantage is that interval summarization to obtain dominant
types introduces imprecision in the phase type information.
As a result, statically computed dominant type may not to
be actual exhibited type for the interval based on which
instructions in the interval are executed and how many times
they are executed.

c) Adding Phase Marks to Attributed Loop Graphs:
Our third class of methods consider a section to be loops in
the attributed loop graph. Using loops for phase marking has
even more advantages than using intervals. Not only does it
allow inserting outside of loops, it also allows better handling
of nested loops by frequently eliminating phase-marks within
loop iterations. This is an even more coarse view of the pro-
gram than the interval based technique. Furthermore, since it
is an inter-procedural analysis, transitions across function calls
are handled. Just like interval typing, loop typing introduces
some imprecision in the type information.

3) Determining block types: In this work, we choose to
focus more on developing and evaluating (1) the various
techniques and granularity for determining and marking phase
transitions and (2) the dynamic analysis and optimization
techniques. However, as a proof of concept, we have developed
a simple static analysis for determining types of basic blocks.

This analysis involves looking at a combination of instruc-
tion types as well as a rough estimate of cache behavior
(computation based on reuse distances [17]). Information
describing these two components are used to place blocks in
a two dimensional space. The blocks are then grouped using
the k-means clustering algorithm [18].

We have evaluated the accuracy of this approach in com-
bination with our loop based clustering technique as follows.
Blocks are classified into groups by using this simple analysis.
Next, the dominant type of the loops are determined using the
algorithm from Section II-A1. This loop typing is compared
with the actual observed behavior of the loops.

In summary, experimentation shows that this technique
miss-classifies only about 15% of loops. As our results show
in Section IV, this is accurate enough for our purposes and
thus no further improvements are sought at this time. However,
a more precise analysis could simply be substituted in future
to improve overall performance.



B. Dynamic Analysis and Tuning

After phase transition marking is complete, we have a
modified binary with phase marks at appropriate points in the
control flow. These phase marks contain an executable part
and the phase type for the current section. The executable part
contains code for dynamic performance analysis and section-
to-core assignment. During the static analysis, this dynamic
analysis code is customized according to the phase type of
the section to reduce overhead.

The code in the phase mark either makes use of previous
analysis to make its core choice or observes the behavior of
the code section. A variety of analysis policies could be used
and any desirable metric for determining performance could
be used as well. In this paper, we present a simple analysis
and similarity metric used for our experiments.

For this case, the code for a phase mark serves two purposes:
First, during a transition between different phase types, a
core switch is initiated. The target core is the core previously
determined to be an optimal fit for this phase type. Second,
if an optimal fit for the current phase type has not been
determined, the current section is monitored to analyze its
performance characteristics. The decision about the optimal
core for that phase type is made by monitoring representative
sections from the cluster of sections that have the same phase
type. By performing this analysis at runtime, we do not
require the programmer to have any knowledge of the target
architecture. Furthermore, the asymmetry is determined at
runtime removing the need for multiple program versions cus-
tomized for each target architecture. Since our static technique
ensures that sections in the same cluster are likely to exhibit
similar runtime behavior, the assignment determined by just
monitoring few representative sections will be valid for most
sections in the same cluster. Thus, monitoring all sections will
not be necessary. This helps to reduce the dynamic overhead
of our technique.

For analyzing the performance of a section, we measure
instructions per cycle (IPC) (similar to [19], [20]). IPC cor-
relates to throughput and utilization of AMPs. For example,
cores with a higher clock frequency can efficiently process
arithmetic instructions whereas cores with a lower frequency
will waste fewer cycles during stalls (e.g. cache miss). IPC is
monitored using hardware performance counters prevalent in
modern processors. The optimal core assignment is determined
by comparing the observed IPC for each core type.

Our technique for determining optimal core assignment is
shown in Algorithm 2. The underlying intuition is that cores
which execute code most efficiently will waste fewer clock
cycles resulting in higher observed IPC. Since such cores are
more efficient, they will be in higher contention. Thus, the
algorithm picks a core that improves efficiency but does not
overload the efficient cores.

This algorithm first sorts the observed behavior on each core
and sets the optimal core to the first in the list. Then, it steps
though the sorted list of observed behaviors. If the difference
between the current and previous core’s behavior is above

Algorithm 2 Optimal Core Assignment for n Cores
select(π,δ):best core for phase type π, with threshold δ
C := {c0, c1, . . . , cn} (set of cores)
Sort C s.t. i > j ⇒ f(ci, π) > f(cj , π).
f(ci, π) - the actual measured IPC of block type π on core ci.
d← c0
for all ci ∈ C\{cn} do
θ = f(ci+1, π)− f(ci, π)
if θ > δ ∧ f(ci+1, π) > f(d, π) then
d← ci+1

end if
end for
return d

some threshold, the optimal core is set to the current core.
The intuition is that when the difference is above the threshold,
we will save enough cycles to justify taking the space on the
more efficient core. By performing the performance analysis at
runtime, this algorithm for computing optimal core assignment
does not require knowledge of the program or underlying
architecture thus easing the burden on the programmer. It also
eliminates the need for an optimized version of the program for
each target architecture thus avoiding maintenance problems.

III. ANALYSIS AND INSTRUMENTATION FRAMEWORK

We developed a static analysis and instrumentation frame-
work (based on the GNU Binutils) for phase detection and
marking. By instrumenting binaries rather than source code,
we avoid compiler modification. Low overhead of instrumen-
tation is crucial to reduce the overhead of our phase-marks.
Compared to a similar static instrumentation tool, ATOM [21],
binaries instrumented with our tool execute 10 times faster3.
This is because our binary instrumentation strategy is finely
tuned for this task compared to that of a general strategy
used by ATOM. To summarize, we use code specialization,
live register analysis, and instruction motion so that we only
incur the cost for an unconditional jump and a relatively small
number of pushes. We also do not change the target of any
indirect branch.

Core switches are done using the standard process affinity
API available for Linux (kernel ver. ≥ 2.5). To monitor
the performance of code sections, we use PAPI [22] which
provides an interface to control and access the processor
hardware performance counters.

To monitor a section’s IPC with PAPI we use instructions
retired and cycles (IPC = instructions retired / cycles). IPC is
used to determine the runtime characteristics of phases4. To
deal with limitations that may be imposed by the number of
counters or APIs, we require programs to wait for access to
the counters. Since our approach requires very little dynamic
monitoring, processes seldom have to wait for counter avail-
ability. If a process must wait, the wait time is negligible since
the amount of code that must be monitored is small. Because

3These experiments were done by inserting code before every basic block
for SPEC CPU2000 benchmarks.

4Using IPC as a performance metric may cause problems in presence
of some features (e.g. floating point emulation). For a discussion regarding
dealing with such problems, we refer to our technical report [15].



of this, performance is not impacted significantly by the need
to wait for the counters to be available.

IV. EVALUATION

The aim of this section is to evaluate our five claims made in
Section I. First, we claim that phase-based tuning requires no
knowledge of program behavior or performance asymmetry.
Our technique is completely automatic and requires no input
from the programmer. In our experiments, workloads are gen-
erated randomly and without any knowledge of behavior of the
benchmarks. Second, we claim the technique allows for trans-
parent deployment. Since our analysis and instrumentation
framework operates on binaries, no modification to compilers
is necessary. Furthermore, since we use standard techniques
for switching cores, no OS modifications are necessary. Third,
we claim that with our technique you can “tune once and run
anywhere”. Our static analysis makes no assumptions about
the underlying asymmetry. Since our performance analysis
and section-to-core assignment are done dynamically, the same
instrumented applications may be run on varying asymmetric
systems. Our final two claims are those related to performance:
negligible overhead and improved utilization. In the rest of
this section, we use experimental results to evaluate these two
claims.

A. Experimental Setup

1) System Setup: Our setup consists of an AMP with 4
cores. This setup uses an Intel Core 2 Quad processor with
a clock frequency of 2.4GHz and two cores under-clocked to
1.6GHz. There are two L2 caches shared by two cores each.
The cores running at the same frequency share an L2 cache.
We use an unmodified Linux 2.6.22 kernel (which uses the
O(1) scheduler) and standard compilers. Thus, we demonstrate
the transparent deployment benefit of our approach.

There are two main benefits of using a physical system
instead of a simulated system. First, porting our implemen-
tation to another system is trivial since we do not require
any modifications to the standard Linux kernel. Second, we
analyze our approach in a realistic setting. Others have argued
that results gathered through simulation may be inaccurate if
not carried out on a full system simulator [23]. This is because
all aspects of the system are not considered. Therefore, a full
system simulator is desired. This setup is limited in hardware
configurations to test. However, we believe this platform is
sufficient to show the utility of our approach.

We use the perfmon2 monitoring interface [24] to measure
the throughput of workloads. For evaluation purposes, to
determine basic block types for our static analysis with little to
no error, we use an execution profile from each core. Using the
observed IPC, we assign types to basic blocks. The difference
in IPC between the core types is compared to an IPC threshold
to determine the typing for basic blocks.

2) Workload Construction: Similar to Kumar et al. [5]
and Becchi et al. [20] our workloads range in size from
18 to 84 randomly selected benchmarks from the SPEC
CPU 2000 and 2006 benchmark suites. For example, if we

are testing a workload of size 18 there are 18 benchmarks
running simultaneously. We refer to such a workload as having
18 slots for benchmarks. Like Kumar et al. [5] we want the
system to receive jobs periodically, except rather than jobs
arriving randomly, our workloads maintain a constant number
of running jobs. To achieve this constant workload size, upon
completion of a benchmark, another benchmark is immediately
started. If we were to simply restart the same benchmark upon
completion, we may see the same benchmarks continuously
completing if our technique favors a single type of benchmark.
Thus, we maintain a job queue for each workload slot. That
is, if we have a workload of size 18 then there are 18 queues
(one for each slot in the workload). These 18 queues are each
created individually from randomly selected benchmarks from
the benchmark suites. When a workload is started, the first
benchmark in each queue is run. Upon completion of any
process in a queue, the next job in the queue is immediately
started. When comparing two techniques, the same queues
were used for each experiment. This ensures that we more
accurately capture the behavior of an actual system.

B. Space and Time Overhead

Statically, we insert phase marks (consisting of data and
code) in the program to enable phase-based tuning. Since
insertion of large chunks of code may destroy locality in the
instruction cache, low space overhead is desired. Also, a phase
mark’s execution time is added to the execution of the original
program. Thus, we must ensure that the overhead does not
overshadow the gains achieved by our technique.

1) Space Overhead: To measure space overhead, we com-
pared the sizes of the original and modified binaries for
variations of our technique. Figure 3 shows a box plot for
the measurements taken from the benchmarks in the SPEC
CPU 2000 and 2006 benchmark suites. The box represents the
two inner quartiles and the line extends to the minimum and
maximum points. The trends are expected. As the minimum
size increases, space overhead decreases. Similarly, as looka-
head depth increases, space overhead generally decreases. For
individual programs this is not always the case because by
adding another depth of lookahead, the percentage of blocks
belonging to the same type may be pushed over the threshold
causing another insertion point.

Fig. 3: Space overhead



For our best technique (loop technique with minimum size
of 45), we have less than 4% space overhead. For the same
technique we have an average of 20.24 phase marks per
benchmark where each phase mark is at most 78 bytes.

2) Time Overhead: To measure the time overhead of phase
marks and core switches instead of switching to a specific
core, we switch to “all cores”. Switching to “all cores” means
that the same API calls are made that optimized programs
make, however, instead of defining a specific core, we give all
cores in the system. Thus, the difference in runtime between
the unmodified binary and this instrumented binary shows the
cost of running our phase marks at the predetermined program
points. Figure 4 shows results for workloads of size 84.

Fig. 4: Time overhead: workload size 84

The trends shown are mostly expected and are similar to
those for space overhead. What makes these results interesting
is that in some cases overhead was as little as 0.14%. At first,
it is quite surprising that the loop based technique reduced
overhead as much as it did. There are several reasons for
this improvement. First, compared to the interval and basic
block techniques, only loops are considered whereas the other
techniques considers many intervals and groups of blocks
which are not loops. On top of this, it considers nesting of
loops. Clearly, removing an insertion point inside of a nested
loop will greatly reduce the number of total executions of
phase marks. Not only does the technique consider nesting,
but it also considers function calls in order to eliminate phase
marks in functions that are called inside of loops thereby
eliminating more phase marks from loops.

3) Core Switches: Here we analyze the frequency and cost
of core switches for each benchmark. First, experiments were
done to estimate the cost of each core switch. This was
done by writing a program that alternates between cores and
then counting the cycles of execution for this program. Using
this technique, we have determined that a core switch takes
approximately 1000 cycles. More precise measurement could
be done, but this is sufficient to gain insight into the necessary
cycles require to amortize the cost of a core switch. Next, we
consider core switches for each benchmark in detail.

In Table 1 we show the number of core switches and runtime
(in isolation) for each benchmark. This table shows that
most programs change phase types occasionally throughout
execution. Some programs differ in that they have few or only
one phase according to our analysis. These benchmarks, aside

Benchmark Switches Runtime (s)
401.bzip2 (2006) 4837 364

410.bwaves (2006) 205 33636
429.mcf (2006) 15 872

459.GemsFDTD (2006) 0 3327
470.lbm (2006) 99 1123
473.astar (2006) 0 55

188.ammp (2000) 3 67
173.applu (2000) 205 3414

179.art (2000) 3 46
183.equake (2000) 7715 62

164.gzip (2000) 3 23
181.mcf (2000) 6 58

172.mgrid (2000) 2005 172
171.swim (2000) 3204 5720
175.vpr (2000) 6 46

Table 1: Switches per benchmark (Loop[45], 0.2 threshold)

from choosing the best core to execute on, mostly stay on the
same core. Finally, two benchmarks (459 and 473), do not
have any phases at all. These benchmarks will simply execute
on any core the OS deems appropriate.

1
10

100
1,000
10,000

100,000
1,000,000
10,000,000

100,000,000
1,000,000,000
10,000,000,000
100,000,000,000

1,000,000,000,000
10,000,000,000,000

C
yc

le
s 

(l
o

g 
sc

al
e

)

Average Cycles per Core Switch

Fig. 5: Cycles per Core Switch

Figure 5 presents the average number of cycles per core
switch (log scale). Most benchmarks fall in the range of tens
of billions of cycles per core switch which is clearly enough
amortize the switching cost.

C. Throughput

To test our hypothesis that “phase-based tuning will signif-
icantly increase throughput”, we compared our technique and
the stock Linux scheduler (for the same workloads run under
the same conditions). Throughput was measured in terms of
instructions committed over a time interval (0% representing
no improvement). We measure how variations of our technique
and variables in our algorithms affect throughput. For all
figures presented in this section, the data is taken from the
first 400 seconds of the workload execution.

It is important to note that the measurements for throughput
include the instructions inserted as part of the phase marks.
This code is efficient and is likely to skew the measurements.
Nevertheless, throughput is considered in order to measure
the impact of several variables in our technique. For example,
with the same technique, variations in the threshold used to
determine core assignment will result in a minor impacts
to the throughput by the extra instructions in phase marks.



Thus, throughput still gives insight into how variables in the
technique impact performance.

1) IPC threshold: First, we want to see how the IPC
threshold affects throughput. As mentioned in Section III, IPC
threshold is used to determine the section-to-core assignment.
Figure 6 shows how different threshold values affect through-
put when all other variables are fixed (technique, min. size,
lookahead, etc).

Fig. 6: Throughput: Basic block strategy, min. block size: 15, lookahead depth:
0, variable IPC threshold

These results are as expected. Extreme thresholds may
show a degradation in throughput because the entire workload
eventually migrates away from one core type. Between these
extremes lies an optimal value. Near optimal thresholds result
in a balanced assignment that assigns only well-suited code to
the more efficient cores.

2) Lookahead depth: We have examined the impact of
lookahead depth for the basic block technique. The trends are
expected in that less lookahead gives higher throughput but at
a significant cost in fairness.

3) Clustering error: Statically predicting similarity will
have some inaccuracy. Thus, in Figure 7 we show how
our technique performs with approximate phase information.
Note that even when considering no static analysis error, our
behavior information is not perfect since it only considers
program behavior in isolation. We tested the same variables as
Figure 6 but with error levels ranging from 0% to 30%. For
our tests, since we have two core types, our perfect assignment
(0% error) consists of two clusters, one for each core type. To
introduce this error, after determining the clustering of blocks,
a percentage of blocks were randomly selected and placed into
the opposite cluster. The result is that blocks we expect to
perform better on a “fast” core are run a “slow” core and vice
versa.

Fig. 7: Throughput improvement: Basic block strategy, min. block size: 15,
lookahead depth: 0, variable error

These results show that our technique is still quite effective
even when presented with approximate block clustering. With
a 10% error we see almost no loss in performance and with

20% error we still see a significant performance increase. At
30% error we see little performance improvement.

4) Minimum instruction size: Now, we consider how min-
imum instruction size affects throughput for the three tech-
niques. The results are expected and similar to those for
lookahead. Considering smaller blocks and intervals generally
results in higher throughput. This is for the same reasons as
lookahead depths, however, with larger minimum instruction
size we may ignore small loops that are executed frequently.
As mentioned previously, this improvement must be balanced
with overhead costs which were discussed in Section IV-B.

D. Fairness

Improved throughput is advantageous, however, in many
systems we also desire fairness. Therefore, we analyze the
fairness of our technique. We use three metrics to analyze
fairness: max-flow, max-stretch, and average process time.
Max-flow and max-stretch were developed by Bender et al. for
determining fairness for continuous job streams [25].

For each process, we have the following data: ai: arrival
time of process i, Ci: completion time of process i, and ti:
processing time of process i (in isolation). First, max-flow is
defined as maxj Fj ,where Fj = Cj − aj . This is basically
the longest measured execution time. So, if even one process
is starving, this number will increase significantly. Second,
max-stretch is defined as: maxj Fj/tj . This can be thought
of as the largest slowdown of a job. We consider this because
we want processes to speed up, but not at the expense of
others slowing down significantly. These measurements for our
techniques are shown in Table 2.

Technique
% decrease over standard Linux

Max-Flow Max-Stretch Avg. Time
BB[10,0] -10.75 -17.87 14.57
BB[10,1] -28.89 -26.44 0.74
BB[10,2] -51.21 -16.73 -9.34
BB[10,3] -43.19 -1.63 -8.78
BB[15,0] 17.01 0.65 23.65
BB[15,1] 18.33 13.29 25.73
BB[15,2] -27.81 -12.19 -4.08
BB[15,3] -36.51 -24.13 7.11
BB[20,0] -39.55 -84.33 -10.35
BB[20,1] -17.27 -34.65 28.42
BB[20,2] -41.54 -56.90 22.88
BB[20,3] -56.41 -48.46 9.00
Int[30] 3.86 -11.50 9.69
Int[45] 39.15 32.78 28.60
Int[60] -27.36 13.80 27.38

Loop[30] 3.24 6.54 14.86
Loop[45] 12.04 20.41 35.95
Loop[60] -16.10 17.57 10.40

Table 2: Fairness Comparison to standard Linux assignment: Improvements
are shaded.

Our best technique shows the following benefits over the
stock Linux scheduler.
• 12.04% decrease in max-flow,
• 20.41% decrease in max-stretch, and
• 30.95% average decrease in process completion time.

These results were gathered over an 800 second time interval
using the loop based technique with minimum size of 45 and
IPC threshold of 0.15.



E. Analysis of Trade-offs

We have shown that our technique has clear advantages over
the stock Linux scheduler while maintaining fairness. How-
ever, the goal of a scheduler varies based on how the system is
used. Some systems desire high levels of fairness while others
are only concerned with throughput. It may also be the case
that a balance is desired instead. Therefore, it is important
to analyze the trade-off between fairness, average speedup,
and throughput. In this section we discuss these trade-offs
and how different variations of our technique perform with
specific scheduling needs. Due to space limitations we only
present the most interesting results and leave the rest for our
technical report [15].

Here we examine the trade-off between speedup and fair-
ness. Speedup refers to the decrease in average process run-
time. Max-stretch is used for fairness. Figure 8 shows this
trade-off for different variations of our technique.

Fig. 8: Speedup vs Fairness: average time vs. max stretch

These results show that a balance between the two exists.
Our interval and loop techniques perform quite well at bal-
ancing these two metrics. Many variations show significant
increases in speedup, but at a loss of fairness.

V. RELATED WORK

Our previous work on phase-based tuning considered the
static analysis at the basic block and interval levels [26], [27].
This work enhances our technique to be inter-procedural and
loop based. We also consider the balance of fairness, speedup,
and throughput as an important factor and give more details
regarding core switches. Somewhat contrary to our preliminary
results, after rigorous experiments with much larger data set
it turned out that the interval-level techniques were quite
superior to the basic block techniques. This further led to the
development of the loop-level inter-procedural static analysis.
Also new is a preliminary technique for static block typing.

Becchi et al. [20] propose a dynamic assignment tech-
nique making use of the IPC of program segments. However,
this work focuses largely on the load balance across cores.
Shelepov et al. [28] propose a technique which does not re-
quire dynamic monitoring (uses static performance estimates).
However, this technique does not consider behavior changes
during execution. Li et al. [3] and Koufaty et al. [29] focus
on load balancing in the OS scheduler. They modify the OS

scheduler based on the asymmetry of the cores. While this
produces an efficient system, the scheduler needs knowledge
of the underlying architecture. Our work differs from these in
the following way. First, we are not directly concerned with
load balancing. Second, we focus on properly scheduling the
different phases of a programs behavior.

Tam et al. [19] determine thread-to-core assignment based
on increasing cache sharing. They use cycles per instruction
(CPI) as a metric to improve sharing for symmetric multi-
core processors. Kumar et al. propose a temporal dynamic
approach [5]. After time intervals, a sampling phase is trig-
gered after which the system makes assignment decisions for
all currently executing processes. This procedure is carried
out throughout the entire programs execution. To reduce
the dynamic overhead, we do not require monitoring once
assignment decisions have been made.

Mars and Hundt [30] use a similar hybrid technique to
make use of a range of static optimizations and choose the
correct one at runtime using monitoring. Their approach differs
in that their optimizations are multiple versions of the code.
This requires optimization to be done during compilation to
avoid problems such as indirect branches in the binary. Thus
they are tied to a specific compiler (we are not). Similarly,
Dubach et al. [31] use machine learning to dynamically predict
desired hardware configurations for program phases. We do
not determine the best configuration for phases, instead, we
choose the best from a set of choices.

There is a large body of work on determining phase be-
havior [11], [32], using phase behavior to reduce simulation
time [10], [11], [33], guide optimizations [9], [34]–[38], etc.
Many of these techniques determine phase information with
a previously generated dynamic profile [11]. Other techniques
determine phase behavior dynamically [9], these techniques
do not require representative input, however, they are likely to
incur dynamic overheads.

VI. DISCUSSION

A. Applicability to Multi-threaded Programs

The simplicity of our approach allows it to immediately
work on multi-threaded applications. Recall that binaries are
modified by inserting code. When an application spawns
multiple threads, it is essentially running one or more copies
of the same code which was present in the original application.
The framework will have analyzed this code and modified it
as needed. Thus, each thread will contain the necessary code
switching and monitoring code present in the phase marks.
Further discussion of how code and data sharing across cores
is likely to impact performance is in our technical report [15].

B. Changing Application and Core Behavior

Recall that the workload on a system may change the
perceived characteristics of the individual cores. Furthermore,
program behavior may change itself periodically (e.g. warm-up
phase). While not addressed explicitly in this paper, solutions
for these problems only require minor modifications to the
techniques presented here. Since our technique does not



actually look at the physical hardware characteristics, we
handle the changes in each cores behavior that occurs based on
other processes in the system. For changing program behavior,
simple feedback mechanisms can be added [15].

C. Scalability for many-cores

While our current implementation performs well for multi-
core processor, there is a potential scalability issue for many-
core processors since each core in the system would need to be
tested for each cluster. However, previous work suggests that
as few as two cores types are sufficient [2], [39]. Thus, if we
can group cores into types (either manually or automatically
using carefully constructed analysis) we can largely reduce the
problem to one similar to a multi-core processor.

VII. CONCLUSION AND FUTURE WORK

AMPs are an important class of processors that have been
shown to provide nice trade-off between the die size, number
of cores on a die, performance, and power [1], [2], [4].
Devising techniques for their effective utilization is an im-
portant problem that influences the eventual uptake of these
processors [3], [4]. The need to be aware of, and optimize
based on, the applications’ characteristics and the nature of
the AMP significantly increases the burden on developers. In
this work we have shown that phase-based tuning improves
the utilization of AMPs while not increasing the burden on the
programmer. Our experiments show a 36% reduction in the
average process time compared to the stock Linux scheduler.
This is done while incurring negligible overheads (less than
0.2% time overhead) and maintaining fairness.

Future work involves extending phase-based tuning in sev-
eral directions. First, we would like to study a wider variety of
AMPs. We have already tried an additional setup consisting of
3 cores (2 fast, 1 slow). Performance results for our technique
are similar for this setup (e.g. 32% speedup). However, it
would be sensible to test additional configurations as they
become widely available. Other future directions include im-
proving our dynamic characteristics analysis and tuning to
include feedback-based adaptation.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
comments and suggestions. The authors were supported in part
by the NSF under grant CCF-08-46059.

REFERENCES

[1] M. Gillespie, “Preparing for the second stage of multi-core hardware:
Asymmetric cores,” Tech. Report - Intel, 2008.

[2] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Hetero-
geneous chip multiprocessors,” Computer, 2005.

[3] T. Li et al., “Efficient operating system scheduling for performance-
asymmetric multi-core architectures,” in SC, 2007.

[4] J. C. Mogul et al., “Using asymmetric single-ISA CMPs to save energy
on operating systems,” IEEE Micro, 2008.

[5] R. Kumar et al., “Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance,” in ISCA, 2004, p. 64.

[6] ——, “Core architecture optimization for heterogeneous chip multipro-
cessors,” in PACT, 2006.

[7] A. L. Lastovetsky and J. J. Dongarra, High Performance Heterogeneous
Computing. John Wiley & Sons, Inc., 2009.

[8] C. Boneti et al., “A dynamic scheduler for balancing hpc applications,”
in SC ’08, 2008.

[9] P. Nagpurkar, C. Krintz, M. Hind, P. F. Sweeney, and V. T. Rajan,
“Online phase detection algorithms,” in CGO, 2006.

[10] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” in
ASPLOS-XI, 2004.

[11] T. Sherwood et al., “Automatically characterizing large scale program
behavior,” in ASPLOS-X, 2002.

[12] F. E. Allen, “Control flow analysis,” in Symposium on Compiler opti-
mization, 1970, pp. 1–19.

[13] J. Lau, E. Perelman, and B. Calder, “Selecting software phase markers
with code structure analysis,” in CGO, 2006.

[14] M. C. Huang et al., “Positional adaptation of processors: application to
energy reduction,” Comp. Arch. News, 2003.

[15] T. Sondag and H. Rajan, “Phase-based tuning for better utilized multi-
cores,” Iowa State University, Department of Computer Science, Tech.
Rep., August 2010.

[16] S. S. Muchnick, Advanced Compiler Design & Implementation, D. E.
Penrose, Ed. Academic Press, 1997.

[17] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric for cache
behavior,” in IASTED, 2001.

[18] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[19] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors,” Operating Systems
Review, 2007.

[20] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” in CF, 2006.

[21] A. Srivastava and A. Eustace, “Atom: a system for building customized
program analysis tools,” in PLDI ’94, 1994.

[22] J. Dongarra et al., “Experiences and lessons learned with a portable
interface to hardware performance counters,” in PADTAD Workshop,
2003.

[23] W. Mathur and J. Cook, “Towards accurate performance evaluation using
hardware counters,” in WSMR, 2003.

[24] S. Eranian, “permon2: a flexible performance monitoring interface for
linux,” in Ottawa Linux Symposium (OLS), 2006.

[25] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and stretch
metrics for scheduling continuous job streams,” in Annual symposium
on Discrete algorithms, 1998.

[26] T. Sondag and H. Rajan, “Phase-guided thread-to-core assignment for
improved utilization of performance- asymmetric multi-core processors,”
in IWMSE, May 2009.

[27] T. Sondag, V. Krishnamurthy, and H. Rajan, “Predictive thread-to-core
assignment on a heterogeneous multi-core processor,” in PLOS, Oct.
2007.

[28] D. Shelepov et al., “Hass: a scheduler for heterogeneous multicore
systems,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, 2009.

[29] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in EuroSys, 2010.

[30] J. Mars and R. Hundt, “Scenario based optimization: A framework for
statically enabling online optimizations,” in CGO, 2009.

[31] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. O’Boyle, “A predictive
model for dynamic microarchitectural adaptivity control,” 2010.

[32] E. Duesterwald et al., “Characterizing and predicting program behavior
and its variability,” in PACT, 2003.

[33] R. Balasubramonian et al., “Memory hierarchy reconfiguration for
energy and performance in general-purpose processor architectures,” in
MICRO, 2000.

[34] S. Hu, “Efficient adaptation of multiple microprocessor resources for
energy reduction using dynamic optimization,” Ph.D. dissertation, The
Univ. of Texas-Austin, 2005.

[35] N. Peleg and B. Mendelson, “Detecting change in program behavior for
adaptive optimization,” in PACT, 2007.

[36] F. Vandeputte, L. Eeckhout, and K. D. Bosschere, “Exploiting program
phase behavior for energy reduction on multi-configuration processors,”
J. Sys. Archit., 2007.

[37] G. Fursin et al., “A practical method for quickly evaluating program
optimizations,” in HiPEAC 2005, 2005.

[38] V.J. Jiménez et al., “Predictive runtime code scheduling for heteroge-
neous architectures,” in HiPEAC ’09, 2009.

[39] E. Grochowski et al., “Best of both latency and throughput,” in ICCD
’04, Oct. 2004, pp. 236–243.


