
FRANCES-A: A TOOL FOR ARCHITECTURE LEVEL PROGRAM VISUALIZATION

Tyler Sondag
Iowa State University

sondag@iastate.edu

Kian L. Pokorny
McKendree University

klpokorny@mckendree.edu

Hridesh Rajan
Iowa State University

hridesh@iastate.edu

ABSTRACT
Integral to computer science education are computer organization and architecture courses. We present
Frances-A, an engaging investigative tool that provides an environment for studying real assembly languages
and architectures. Frances-A includes several features that enhance its usefulness in the classroom such as
graphical relationships between high-level code and machine code, illustrated step by step machine state
transitions, color coding to make instruction behavior clear, and illustration of pointers. Frances-A uses a
simple web interface requiring no setup and is easy to use, making it easy to adopt in a course.

INTRODUCTION
Computer organization and architecture courses are a crucial component in computer science education [1].
The study of a computer architecture and its behavior is a typical component to such a course. Such com-
ponents often revolve around “toy” architectures. Although there are advantages to learning a “real” ar-
chitecture [17], it is complex and difficult to compress this into a semester; therefore, it is desirable to use
interactive tools which have been shown to be highly effective for education [8, 17].

Many tools exist for simulating programs on different architectures [2–4, 7, 11, 13], however, they are
typically time consuming to learn and difficult to use. As a result, adopting them in a course is challenging.
At the same time, other difficult topics like machine language must be learned which may be significantly
different from previous languages students have encountered.

To solve these problems, we present Frances-A, a tool for visualizing program execution on a realistic
architecture. Frances-A includes features that enhance its usefulness in education. First, it provides a simple,
easy to learn and use web interface requiring no setup. Second, it graphically shows how familiar high-level
code maps to machine code, thus, not requiring thorough knowledge of a machine language to start using the
tool. Third, it shows graphically how each machine instruction impacts the machine state. Fourth, it allows
forwards and backwards stepping through the program allowing students to revisit complicated steps. Fifth,
it color codes parts of the machine state to make the impact of each instruction clear. Finally, difficult
concepts surrounding addresses (e.g. pointers and stack) are illustrated using color coded arrows.

By providing a simple web-based interface three of the four biggest factors hindering adoption of such
visualization tools in educational settings1 are avoided, namely time to learn the new tool, time to develop
visualizations, and lack of effective development tools (other problems such as reliability and install issues
are also eliminated) [17]. The interface displays the system state in a logical way and illustrates several
important concepts. Further, backwards stepping is a rare feature that our tool includes. All of this together
makes the Frances-A tool easy to adopt, use, and understand.

RELATED WORK
Architectural Simulators
A large body of work exists for simulating architectures and teaching computer organization and architec-
ture [2–4, 7, 11, 13]. There are also many simulators targeted toward advanced users that are typically very
complex and difficult to learn. We now briefly discuss work in this area most similar to our introductory
computer architecture pedagogical tool.

Null and Lobur developed MarieSIM [11] for use in teaching computer architecture and assembly lan-
guage. MarieSIM uses a simple assembly language and has an accompanying textbook. Further, MarieSIM
requires users to program simulations in the machine language whereas Frances-A gives students the option

1We solve the fourth problem by making interesting examples (as lessons) available on Frances-A’s website.

1

of entering simulations using high-level languages. Thus, the learning curve is low and students can visual-
ize code they typically write. To help ease the adoption of Frances-A into existing courses, course materials
have been developed around topics that compliment existing courses utilizing a standard textbook.

Other related projects include Graham’s “The Simple Computer” [7] which uses a command line inter-
face and custom ISA, and GSPIM [3], a MIPS simulator which also shows control flow graphs, but does not
maintain actual instruction ordering.

Program Visualization
A large body of work exists for software visualization [5,8,10,12,14,16–20]. Price et al. [12] make the dis-
tinction between algorithm visualization (abstract code) and program visualization (actual code). We focus
on program visualization and consider algorithm visualization to be complementary to Frances-A. A major
difference between this work and previous work is that we believe the Frances-A interface is much simpler
than related projects. This addresses the primary factor limiting adoption of previous work [17]. This is able
to be done because Frances-A’s backend consists of several powerful program analysis techniques. Rather
than requiring installation, Frances-A is deployed via a web interface, removing hurdles such as software
and OS dependencies. Finally, Frances-A is developed using a realistic machine model and instruction set
rather than toy models, avoiding a disconnect between the tool and “real” language [17].

Examples of program visualization techniques include debuggers (e.g. gdb [6]) and graphical debuggers
(e.g. kdbg). These tools are often difficult to learn due to their power and expressiveness. Furthermore they
do not visualize program structure. Also, debugging concepts such as breakpoints, different techniques for
stepping through execution, etc. may be confusing at first. Frances-A’s interface is only as expressive as
necessary for introductory students. Finally, the interface has fixed abstractions that allow us to eliminate
issues like breakpoints and different techniques for stepping through execution.

Most similar is HDPV [16], a runtime state visualization tool for C/C++ and Java programs. This work
is complementary to our own in two ways. First, HDPV focuses on visualization of data structures, whereas
our focus is on control flow, system state, and program behavior. Second, they deal with large programs
whereas we focus on introductory courses. HDPV captures low level details like memory layout, however,
they do not trace register values. For introductory students this can be quite confusing. For example, loop
counters often never go beyond registers. This limitation is addressed in Frances-A by modeling registers,
stack, and heap separately. Finally, Frances-A allows the user to step backward in the code. HDPV does
not. Also similar is IBM’s Jinsight tool [20] which focuses on more advanced topics.

GOALS FOR FRANCES-A
Specific goals motivated the design of Frances-A. Chief among these goals is an easy to use tool for in-
troductory students learning low-level computer concepts. This includes being easy to learn, requiring no
setup, and not requiring thorough knowledge of a machine language. Next, the tool needed to be effective.

Several steps were taken to make the tool as easy to use as possible. First, the tool requires no setup,
avoiding issues such as software dependencies. This helps avoid adoption hurdles regarding reliability and
eases tool investigation by potential educators. Next, the simple interface design has a small learning curve.
This is necessary to ensure that tools are feasible to adopt in a single semester without distracting students.
To facilitate this simple interface, graphical features showing complex properties such as pointers, changes
in state and accesses to memory locations are utilized. This includes a logical layout of the system state.
Another highly important goal is to not require students to have a thorough knowledge of machine language
to start using the tool. Since architecture courses are often the first exposure a student has to machine
language, the tool needed to ease this process as much as possible.

A main goal of the Frances-A system to set it apart from others is ease of use, however, effectiveness is
critical. It has been shown that the way students interact with visualization tools is more important than the
visualization itself [8]. Thus, another goal is to have a hands-on tool that improves the learning process with

2

the following properties:
1. Support visualization on a real architecture and instruction set. This makes the knowledge gained by

using the tool applicable to standard learning materials and in the real world.
2. Allow students to enter simulation code in a familiar high-level language. This helps students vi-

sualize how the machine will handle familiar source code. This also allows students to more rapidly
perform their experimentation instead of coding visualization code in an unfamiliar machine language.

3. Allow students to step both forward and backward during program visualization. This is a feature
which is rare amongst such visualization tools. This feature is crucial to allow students to revisit
complex instructions and sequences of instructions without re-running the entire simulation.

4. A graphical and logically organized layout. We desired a graphical layout that was logically orga-
nized, color coded to show accesses and modifications to the machine state, and illustrated pointers.

FRANCES-A
Now the major features of Frances-A are described. To start using the tool readers may point their WWW
browser to the URL http://cs.iastate.edu/~sapha/frances.

Figure 1: Simple while loop running through Frances-A.

Interface
Key to Frances-A is a simple easy to use web-interface that requires no setup. An example of this interface
is shown in Figure 1. For now, let us ignore the detailed aspects of the figure and focus on its major
components. There are three main components.

High-level code Entry First, on the far left, is a high-level code input box. Currently, code may be
written in C, C++, and FORTRAN. Support may easily be added for any language that can compile down
to native machine code. Initially, this box is editable so that users may enter their simulation code. After
editing code, the user clicks the “Compile” button. At this point, the code entry box becomes read-only and

3

the “Compile” button is replaced with buttons for stepping backwards and forwards in the assembly code.
For example, in Figure 1 the “Compile” button has been pressed and several steps have been executed. At
this point the simple while loop code is no longer modifiable unless the “Reset” button is pressed.

Low-level code In the middle is the machine code. This representation comes from previous work on
the Frances tool [15]. This component is discussed in more detail in the next section.

Machine state Finally, the far right is the machine state. Currently, this portion of the tool supports the
x86 architecture. This portion of the interface is described in detail later.

High-level to machine language relation
The middle section of the interface shows a graphical representation of the machine code (from previous
work on the Frances tool targeting teaching code generation [15]). This representation allows users to easily
see how high-level code maps to machine code using graphical features such as color coding and different
edge drawing techniques. In Figure 1 the middle portion shows the simple while loop. The legend in the
bottom left describes edge types and color codes, allowing students to easily identify the code constructs.

The purpose of this portion of the interface is to ease the burden when learning machine language.
Students enter code in familiar high-level language, then see how their code is represented in machine code
and how that code modifies the system state. Thus students write in familiar high level language and Frances-
A provides the connection between the high level, assembly and machine states. Finally, it also helps the
user visualize how different program structures behave at the machine level. Currently this portion of the
tool supports AT&T and Intel x86 syntax as well as MIPS. Interested readers should refer to the original
paper on the tool for a thorough discussion [15].

Graphical layout of machine state
The major extension to the previous work [15] that sets Frances-A apart is the graphical representation of the
machine state. In this section each aspect of the graphical representation of the machine state is discussed.

The first part consists of the blocks marked “Last Instruction” and “Next Instruction”. As the labels
suggest, these denote the previously executed instruction that gave the current state and the next instruction
to be executed. For example, in Figure 1, a mov instruction was just executed and push %ecx is next.
This allows the user to find the current location in program execution. Then, they can consider the changes
caused by the last instruction. For example, the user can see that the last instruction placed the value in
%esp into %ebp. By inspecting the current state, the user can see that these two registers contain the same
value. Next, they can try to determine the effects of the next instruction before it executes.

Note that the “Next Instruction” box contains the actual next instruction, not just the next sequential
instruction. That is, if the “Last Instruction” was a conditional jump and the branch is set to be taken, the
“Next Instruction” is the target of the branch not the fall-through case.

Next, the system’s registers are separated from the rest of the state. Within this group there are logical
separations. In Figure 2, notice that the first row of registers are the general purpose registers %eax–%edx
In the next row, the two registers %esi and %edi are placed together since these are typically used for
storing addresses for memory reads and writes. Also in this row is the eflags register which contains
the results of compare instructions as well as other secondary results of operations. In this figure, the PF,
SF, and IF flags are set (all others are unset). The user is also shown the actual hexadecimal value of this
register. In the final row, there are three pointer registers. The first two are stack pointers, %esp and %ebp.
Looking at the values contained in the figure, one can determine that these addresses are located on the
stack. The final register in this row is %eip, the instruction pointer.

Next, consider the representation of the stack. Figure 2, shows a stack of 8 elements. Each element has
its own row with columns specifying the address and contents of that location. The stack is important since
it contains most local variables (though some never leave the registers) as well as other temporary values.
For example, in Figure 2, the last instruction moved the value in %eax to the fourth stack location. This

4

corresponds to the assignment of the address of variable x to variable y from the code in Figure 1. As a result,
there is now an edge from the stack location containing this value to the stack location corresponding to vari-

Figure 2: Frances-A after running the tenth instruc-
tion (int *y = &x;) from Figure 1.

able x (third stack location). This illustrates the be-
havior of pointers in the machine. The addresses are
included in the representation so that users can see
how contents of registers correspond to locations on
the stack (e.g. stack pointers %esp and %ebp).

In Figure 2 there are two edges from registers
to the stack, for %ebp and %esp. When stepping
through the simulation, it is easy to see that the %ebp
register points to the location on the stack before the
4 locations are added by the sub $0x10,%esp in-
struction. From the figure it is clear that %esp points
to the top of the stack. This helps illustrate the pur-
poses of the %esp and %ebp registers.

Color coding in Frances-A helps illustrate the
purposes of the instructions and their impact on the
machine state. Green boxes denote portions of the
state that always change and are not referenced di-
rectly (previous and next instructions as well as in-
struction pointer). Yellow boxes around the regis-
ter contents signify that the last instruction accessed
these registers. For example, in Figure 2, the %eax
register has just been read (it was the first operand in
the last instruction). Additionally, the %ebp register
has been accessed when calculating the stack loca-
tion for the target of the operation. Red highlighting
indicates that the contents of the register or stack has
been changed by the last instruction. In Figure 1 the
%ebp register has been modified to contain the value
from %esp and is thus colored red. In Figure 2, the
value in %eax was assigned to the stack location corresponding to variable y. Thus, the corresponding stack
location is red. This avoids the need for the user to try to determine the offset of the stack location manually.
Similarly, consider the edge color coding. Notice that the two stack pointers are drawn in black whereas the
pointer in the stack corresponding to variable y is drawn in red. Like the register and stack coloring, edges
in red were changed in the last step.

Reverse stepping
Another important feature of Frances-A which is rare among similar tools is the ability to step backwards
through execution. This is a necessary feature that allows students to revisit complicated steps and groups
of steps in the simulation. Note that reversing can also be simulated in a tool by rerunning the simulation,
however, students may lose the context of simulation if too many steps are required for revisiting the previous
instruction. Often students are surprised by the results of an instruction or group of instructions. The ability
to step back in the instruction sequence provides immediate comparative results.

Backend
First, the original Frances tool [15]is used to display the machine code portion of the interface. Next, we use
the GDB debugger [6] to perform much of the simulation. Also several newly developed programs to detect

5

changes in state, detect pointer targets, and arrange the state appropriately are utilized. Finally, GraphViz
DOT [9] is used to create the visualization.

CONCLUSION AND FUTURE WORK
Knowledge of computer organization and architecture is a critical component in computer science education.
To ease the process of learning real architectures and their behavior we introduce Frances-A. A key benefit
of this tool is that it is easy to learn, easy to use, and requires no setup. Further, several steps are taken to
enhance its effectiveness. This includes logical separation of components of the machine state (including
register types), edge drawing to show pointer targets and stack behavior, color coding to show accesses and
writes to illustrate each instruction, and the ability to step both backwards and forwards though execution.

Future work involves support for additional architectures such as MIPS. Due to the existing design of
Frances-A, this may quickly be done if users desire. Finally, a thorough evaluation (currently in progress)
to ensure the usability and effectiveness of the tool will be completed. Initial results are promising.

Acknowledgments Sondag and Rajan were supported in part by US NSF under grants 06-27354, 07-
09217, and 08-46059.

References
[1] Computing curricula 2008: An interim revision of cs 2001. http://www.acm.org/education/curricula/

ComputerScience2008.pdf.
[2] B. Nikolic et al. A survey and evaluation of simulators suitable for teaching courses in computer

architecture and organization. IEEE Transactions on Education, 52:449 – 458, 2009.
[3] P. Borunda, C. Brewer, and C. Erten. GSPIM: graphical visualization tool for MIPS assembly pro-

gramming and simulation. SIGCSE Bull., 38(1):244–248, 2006.
[4] G. Braught and D. Reed. The knob & switch computer: A computer architecture simulator for intro-

ductory computer science. J. Educ. Resour. Comput., 1(4):31–45, 2001.
[5] M. J. Conway and R. Pausch. Alice: easy to learn interactive 3D graphics. SIGGRAPH Comput.

Graph., 31(3):58–59, 1997.
[6] Free Software Foundation. GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/.
[7] N. Graham. Introduction to computer science (3rd ed.). West Publishing Co., 1985.
[8] C. D. Hundhausen. Integrating algorithm visualization technology into an undergraduate algorithms

course: ethnographic studies of a social constructivist approach. Comput. Educ., 39(3):237–260, 2002.
[9] J. Ellson et al. Graphviz - open source graph drawing tools. Graph Drawing, 2001.

[10] M. McNally et al. Supporting the rapid development of pedagogically effective algorithm visualiza-
tions. Journal of Computing Sciences in Colleges, 23(1):80–90, 10/2007.

[11] L. Null and J. Lobur. MarieSim: The MARIE computer simulator. J. Educ. Resour. Comput., 3(2):1,
2003.

[12] B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy of software visualization. Journal of Visual
Languages and Computing, 4:211–266, 1992.

[13] P.S. Coe et al. An integrated learning support environment for computer architecture. In WCAE-3 ’97.
[14] D. Sanders and B. Dorn. Jeroo: a tool for introducing object-oriented programming. In SIGCSE, 2003.
[15] T. Sondag, K. L. Pokorny, and H. Rajan. Frances: A tool for understanding code generation. In

SIGCSE, 2010.
[16] J. Sundararaman and G. Back. HDPV: interactive, faithful, in-vivo runtime state visualization for

C/C++ and Java. In Symposium on Software visualization, 2008.
[17] T.L. Naps et al. Exploring the role of visualization and engagement in computer science education. In

ITiCSE-WGR, pages 131–152, 2002.
[18] U. Wolz et al. ’scratch’ your way to introductory cs. In SIGCSE, 2008.
[19] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide. A survey of successful evaluations of program visu-

6

alization and algorithm animation systems. Trans. Comput. Educ., 9(2):1–21, 06/2009.
[20] W.D. Pauw et al. Visualizing the execution of java programs. In Revised Lectures on Software Visual-

ization, International Seminar, pages 151–162, 2002.

7

