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Abstract

Background: Creating a scalable computational infrastructure to analyze the wealth of information contained in
data repositories is difficult due to significant barriers in organizing, extracting and analyzing relevant data. Shared
data science infrastructures like Boag is needed to efficiently process and parse data contained in large data
repositories. The main features of Boag are inspired from existing languages for data intensive computing and can
easily integrate data from biological data repositories.

Results: As a proof of concept, Boa for genomics, Boag, has been implemented to analyze RefSeq’s 153,848
annotation (GFF) and assembly (FASTA) file metadata. Boag provides a massive improvement from existing solutions
like Python and MongoDB, by utilizing a domain-specific language that uses Hadoop infrastructure for a smaller
storage footprint that scales well and requires fewer lines of code. We execute scripts through Boag to answer
questions about the genomes in RefSeq. We identify the largest and smallest genomes deposited, explore exon
frequencies for assemblies after 2016, identify the most commonly used bacterial genome assembly program, and
address how animal genome assemblies have improved since 2016. Boag databases provide a significant reduction
in required storage of the raw data and a significant speed up in its ability to query large datasets due to
automated parallelization and distribution of Hadoop infrastructure during computations.

Conclusions: In order to keep pace with our ability to produce biological data, innovative methods are required.
The Shared Data Science Infrastructure, Boag, provides researchers a greater access to researchers to efficiently
explore data in new ways. We demonstrate the potential of a the domain specific language Boag using the RefSeq
database to explore how deposited genome assemblies and annotations are changing over time. This is a small
example of how Boag could be used with large biological datasets.
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Background
As sequencing data continues to pile up in the online re-
positories [1], scientists can increasingly use multi-tiered
data to better answer biological questions. A major barrier
to these analyses lies with attaining a scalable computa-
tional infrastructure that is available to domain experts
with minimal programing knowledge. The lengthy time
investment required for data wrangling tasks like
organization, extraction, and analysis is increasing and is a
well-known problem in bioinformatics [2]. As this trend
continues, a more robust system for reading, writing and
storing files and metadata will be needed.

This can be achieved by borrowing methods and ap-
proaches from computer science. Boag is a language and
infrastructure that abstracts away details of parallelization
and storage management by providing a domain specific
language and simple syntax [3]. The main features of Boag
are inspired by existing languages for data-intensive com-
puting. These features include robust input/output, query-
ing of data using types/attributes and efficient processing
of data using functions and aggregators. Boag can be im-
plemented inside a Docker container or as a Shared Data
Science Infrastructure (SDSI). Running on a Hadoop clus-
ter [4], it manages the distributed parallelization and col-
lection of data and analyses. Boag can process and query
terabytes of raw data. It also has been
shown to substantially reduce programming efforts,

thus lowering the barrier of entry to analyze very large
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data sets and drastically improve scalability and reprodu-
cibility [4]. Raw data files are described to Boag with at-
tribute types so that all the information contained in the
raw data file can be parsed and stored in a binary data-
base. Once complete, the reading, writing, storing and
querying the data from these files is straightforward and
efficient as it creates a dataset that is uniform regardless
of the input file standard (GFF, GFF3, etc). The size of
the data in binary format is also smaller.

Domain specific languages and Databases in
Bioinformatics
Genomics-specific languages are also common in high-
throughput sequencing analysis such as S3QL, which
aims to provide biological discovery by harnessing
Linked Data [5]. In addition, there are libraries like Bio-
Java [6], Bioperl [7], and Biopython [8] that provide tools
to process biological data.
MongoDB is an open source NoSQL database that also

supports many features of traditional databases like sort-
ing, grouping, aggregating, indexing, etc. MongoDB has
been used to handle large scale semi-structured or
NoSQL data. Datasets are stored in a flexible JSON for-
mat and therefore can support data schema that evolves
over time. MapReduce [9] is a framework that has been
used for scalable analysis in scientific data. Hadoop is an
open source implementation of MapReduce. In the
MapReduce programming model, mappers and reducers
are considered as the data processing primitives and and
are specified via user-defined functions. A mapper func-
tion takes the key-value pairs of input data and provides

the key-value pairs as an output or input for the reduce
stage, and a reducer function takes these key-values pairs
and aggregates data based on the keys and provide the
final output. There are organizations that have used the
power of MongoDB and Hadoop framework together
[10] to address challenges in Big Data. Genomics Eng-
land [11] runs the 100,000 Genomes Project [12] using
MongoDB to harness huge amount of data in bioinfor-
matics. There are also several tools in the field of high-
throughput sequencing analysis that use the power of
Hadoop and MapReduce programming model. Heavy
computation applications like BLAST, GSEA and
GRAMMAR have been implemented in Hadoop [13].
SARVAVID [14] has implemented five well-known ap-
plications for running on Haddop: BLAST, MUMmer,
E-MEM, SPAdes, and SGA. BLAST [15] was also rewrit-
ten for Hadoop by Leo et.al. [16]. In addition to these
programs, there are other efforts based on Hadoop to
address RNA-Seq and sequence alignment [17–19].
A significant barrier to utilize the Hadoop framework

in bioinformatics is the difficulty of the interface and the
amount of expertise that are needed to write a MapRe-
duce programs [20]. The proposed work tries to abstract
away details of these complexities and open a door for
more bioinformatics application. Most applications could
be called from MapReduce rather than reimplementing
them. Unfortunately, there currently does not exist a tool
that combines the ability to query databases, with the ad-
vantage of a domain specific language and the scalability
of Hadoop into a Shared Data Science Infrastructure for
large biology datasets. Boag, on the other hand is such a

Fig. 1 Code to find the smallest and largest genomes in RefSeq

Table 1 Exon Statistics for years > = 2016

Name Total species Exon number Gene number Gene Length Exon per Gene

Bacteria 92,287 N/A 4.3 k ± 1.5 k 890 ± 64 N/A

Fungi 90 32.3 k ± 1.8 k 10 k ± 3.5 k 1.6 k ± 171 2.9 ± 1.3

Archaea 338 N/A 2.9 k ± 0.9 k 851 ± 31 N/A

Viridiplantae 46 385 k ± 155 k 43 k ± 21 k 4.1 k ± 1.3 k 9.2 ± 1.9

Metazoas 185 462 k ± 280 k 24.9 k ± 10.3 k 23 k ± 11.8 k 17.7 ± 6.4

Ascomycota 70 28.4 k ± 13.7 k 10.4 k ± 3.1 k 1.6 k ± 142 2.5 ± 0.8

eudicotyledons (dicots) 37 397 k ± 167 k 45 k ± 22 k 3.8 k ± 688 9 ± 1.3
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tool but is currently only implemented for mining very
large software repositories like GitHub and Sourceforge. It
recently has been applied to address potentials and chal-
lenges of Big Data in transportation [21].

Potential for data parallelization framework in biology
There are several very large data repositories in biology
that could take advantage of a biology specific imple-
mentation of Boag: The National Center for Biotechnol-
ogy Information (NCBI), The Cancer Genome Atlas
(TCGA), and the Encyclopedia of DNA Elements (EN-
CODE). NCBI hosts 45 literature/molecular biology da-
tabases and is the most popular resource for obtaining
raw data for analysis. NCBI and other web resources like
Ensembl are data warehouses for storing and querying
raw data, sequences, and genes. TCGA contains data
that characterizes changes in 33 types of cancer. This re-
pository contains 2.5 petabytes of data and metadata
with matched tumor and normal tissues from more than
11,000 patients. The repository is comprised of eight
different data types: Whole exome sequence, mRNA se-
quence, microRNA sequence, DNA copy number profile,
DNA methylation profile, whole genome sequencing and
reverse-phase protein array expression profile data.

ENCODE is a repository with a goal to identify all the
functional elements contained in human, mouse, fly and
worm. This repository contains more than 600 terabytes
(personal communication with @EncodeDCC and
@mike_schatz) of data with more than 40 different data
types with the most abundant data types being ChIP-
Seq, DNase-Seq and RNA-Seq. These databases repre-
sent only the tip of the iceberg of potential large data re-
positories that could benefit from the Boag framework.
While it is common to download and analyze small sub-
sets of data (tens of Terabytes for example) from these
repositories, analyses on the larger subsets or the entire
repository is currently computationally and logistically
prohibitive for all but the most well-funded and staffed
research groups. While BioMart [22], Galaxy, and other
web-based infrastructures provide an easy to use tool for
users without any knowledge in programming to down-
load subsets of the data, the needs of the advanced users
using the entire database aren’t met as evidenced by a
plethora of bash scripts, R scripts and Python scripts
that are widely utilized and reinvented by bioinformati-
cians. Retrieving the genomics data and performing
data-intensive computation can be challenging using
existing APIs. Biomartr [23] is an R package to retrieve

Table 2 Exon Statistics for years < 2016

Name Total species Exon number Gene number Gene Length Exon per Gene

Bacteria 51,537 N/A 3.8 k ± 1.5 k 885 ± 65 N/A

Fungi 194 29 k ± 20 k 9.2 k ± 3.5 k 1.6 k ± 254 2.8 ± 1.5

Archaea 474 N/A 2.9 k ± 0.8 k 855 ± 40 N/A

Viridiplantae 61 273 k ± 153 k 32 k ± 17 k 4.1 k ± 2.3 k 8 ± 2.5

Metazoas 262 314 k ± 211 k 22.3 k ± 9.6 k 22 k ± 12 k 13.4 ± 5.4

Ascomycota 143 25.2 k ± 14.3 k 9.5 k ± 3.1 k 1.6 k ± 205 2.4 ± 1

eudicotyledons (dicots) 41 328 k ± 133 k 38 k ± 16 k 4 k ± 1.4 k 8.6 ± 1.3

Fig. 2 Number of exons, genes, and exons per gene after 2016. The output is shown in Table 1
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raw genomics data that tries to minimize some of this
complexity.
Here we discuss an initial implementation of Boa for

genomics on a small test dataset, NCBI Refseq, a data-
base containing data and metadata for 153,848 genome
annotation files (GFF). We show the potential of Boag in
a comparative context with python and MongoDB by
assessing various statistics of the Refseq database and
answer the following four questions.

� What is the smallest and largest genome in RefSeq?
How has the average number of exons per gene in
genomes of a clade changed for genomes deposited
before and after 2016?

� How has the popularity of the top five assembly
programs in bacteria changed over time?

� How has assembly quality changed for genomes
deposited before and after 2016?

Results
Summary statistics of RefSeq
While it is straightforward to use the RefSeq website
(https://www.ncbi.nlm.nih.gov/refseq/) to look up this

information for your favorite species, it is cumbersome
to look up this information for tens to hundreds species.
Similarly, while each of these genomes have an annota-
tion file, querying and summarizing information con-
tained in this annotation file from several related
genomes such as average number of genes, average
number of exons per gene and average gene size re-
quires downloading and organizing the annotation files
of interest prior to calculating the statistics.
Data from the RefSeq database was downloaded, a

schema was designed and a Hadoop sequence file gener-
ated for use with Boag, a domain specific language and
shared data infrastructure. The RefSeq data used in this
first implementation of Boag contains GFF files and
metadata from bacterial (143,907), archaea (814), animal
(480), fungal (284) and plant (110) genomes. Each gen-
ome has metadata related to the quality of its assembly
(Genome size, scaffold count, scaffold N50, contig count,
contig N50), the assembler software, and the genic data
contained within the GFF annotation file.
Our goal is to implement Boag on a biological dataset

to demonstrate a means to explore large datasets. In the
following subsections, we will answer the four questions

Fig. 3 Bacterial assembly programs popularity over time. The output of this script is shown in Fig. 4

Fig. 4 Assembler programs for Bacteria over the years
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posed in the introduction and explore Boag efficiency in
storage, speed, and coding complexity.

What is the largest and smallest genome in RefSeq?
As of February 16th, 2019, the largest genome in the
RefSeq database was Orycteropus afer afer (aardvark,
GCF_000298275.1) at a length of 4,444,080,527 bp. The
smallest genome is RYMV, a small circular viroid-like
RNA hammerhead ribozymein sequenced from Rice and
annotated as a Rice yellow mottle virus satellite (viruses)
. Its complete genome has a length of 220 bases and has
a RefSeq id GCF_000839085.1.
With the full RefSeq dataset in a Hadoop sequence

file, this statistic only required seven lines of Boag code
(Fig. 1). In line one, variable g is defined as a Genome
which is a top-level type in our language. MaxGenome
and MinGenome are output aggregators that produce
the maximum and minimum genome length respect-
ively. Lines five and seven in the code emit the assembly
total length to the reducer for all the genomes in the
dataset, then the reducer will identify the largest and
smallest genomes. It took Boag approximately 30 sec-
onds to finish this query when using a single node with-
out Hadoop. It took the equivalent query using python
approximately one hour using a single core.

How has the average number of exons per gene in a
species clade changed for genomes deposited before and
after 2016?
Due to the rapid advancement of sequencing technolo-
gies and genome assembly/annotation programs, any
meaningful biological changes in gene and exon fre-
quency will be confounded with these advancements.
We explored seven clades: five kingdoms and two phyla
to explore how exon number, gene number, gene length

and exons per gene have changed before and after 2016.
These branches of the tree of life included Bacteria, Ar-
chaea, Fungi, Ascomycota (a fungal phylum), Viriplantae
(plants), Eudicotyledons (a clade in flowering plants) and
Metazoans (a clade of animals). In the last two years, the
number of sequenced bacterial genomes has nearly qua-
drupled, while all other clades have seen at least a 50%
increase in RefSeq database (Tables 1 and 2). The num-
ber of genes, number of exons and exons per gene have
increased for all clades database (Tables 1 and 2). Since
prokaryotes do not have exons, Bacteria and Archaea
were excluded from this query for exon number and
exon per gene (NA). A higher number of exons per gene
for the Eukaryotes suggests that gene models are im-
proving and becoming less fragmented. This improve-
ment could be due to improvements in gene annotation
software or assembly contiguity.
We find fewer genes in archaea than in bacteria, at

2.9k and 4.3k genes respectively. The highest gene num-
bers in eukaryotes are plants (43k), with animals and
fungi being having fewer genes at 24.9k and 10k, re-
spectively [24]. However, the mean gene length for these
clades has not changed between timepoints, indicating
that the increased exon content per gene is likely due to
an improvement in annotation software.
This query required 15 lines of Boag code (Fig. 2) using

a five node shared Hadoop cluster on Bridges with 64
mappers approximately 42 minutes to answer this ques-
tion. It took the equivalent query using 45 lines of py-
thon code approximately 20 hours using a single core.

How has the popularity of bacterial genome assembly
programs changed?
The choice of genome assembly program to assemble a
genome depends on many factors including but not

Fig. 5 Assembly statistics for genomes for years after 2016. The output is shown in Table 5

Table 3 List of top three most used assembly programs for Metazoa (Year > =2016)

Kingdom Program Name species Total length Scaffold-count ScaffoldN50 ContigCount ContigN50

Metazoa SOAPdenovo 21 1B ± 0.8B 38 k ± 49 k 7.8 M ± 11M 86 k ± 66 k 98 k ± 208 k

AllPaths 48 0.9B ± 0.7B 7.1 k ± 7 k 4.3 M ± 1.4 M 33 k ± 38 k 188 k ± 335 k

Newbler 7 0.8B ± 0.9B 3.3 k ± 2.2 k 877 k ± 910 k 56 k ± 80 k 75 k ± 60 k
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limited to user familiarity of the program in the domain,
ease of use, assembly quality, turnaround time. Looking
at the number of genomes assembled by the top five
most popular assemblers in bacteria indicate that more
genomes are being assembled over time, that there was a
brief period of popularity with AllPaths in 2014, and a
rapid rise in popularity of the SPAdes assembler in the last
couple of years. CLC workbench offers a GUI interface to
users without programming experience, and has consist-
ently maintained a slice of the user market (Fig. 3).
This query required six lines of Boag code Fig. 4 using

a five node Hadoop cluster with 32 mappers approxi-
mately 30 seconds to answer this question. The equiva-
lent single-cored python query took approximately one
hour with 35 lines of code.

How has metazoan assembly quality changed for
genomes deposited before and after 2016?
To minimize bias in organismal variation and assembly
software, we have limited our comparison to metazoans
and the top three assembly programs. The popular as-
sembly programs for metazoans has been AllPaths after
2016 while SOAPdenovo was the most popular one be-
fore 2016. A high-quality assembly is characterized by a
low scaffold count and high N50, stats that dramatically

improved at the 2016 transition. As it can be seen in
Tables 3 and 4, the scaffold count has decreased for all
three assemblers after 2016 while the contig N50 metric
has increased. This is not a surprise, as assembly
algorithms are expected to improve over time. Newbler
had a dramatic decrease in scaffold count after 2016.
The highest average N50 among metazoans belongs to
AllPaths.
This query required 10 lines of Boag code using five

nodes Hadoop cluster with 32 mappers approximately 30
seconds. An equivalent single-cored Python query took
approximately one hour and 32 lines of code (Fig. 5).

Discussions
Database storage efficiency and computational efficiency
with Hadoop
One benefit of the Boag database is the significant reduc-
tion in required storage of the raw data. The downloaded
NCBI RefSeq data was 379GB, but reduced to 64GB (6.2
fold reduction) in the Boag database. This data size reduc-
tion is due to the binary format of Hadoop Sequence file
which makes disk writing faster than a text file (Fig. 6). A
fungi-only subset of the RefSeq data was dramatically re-
duced from 5.4GB to 0.5 GB (10 fold reduction). This

Table 4 List of top three most used assembly programs for Metazoa (Year < 2016)

Kingdom Program Name species Total length Scaffold-count ScaffoldN50 ContigCount ContigN50

Metazoa SOAPdenovo 98 1.2B ± 0.7B 40 k ± 38 k 4.5M± 13M 116 k ± 79 k 42 k ± 48 k

AllPaths 54 1.5B ± 1.1B 11 k ± 13 k 7.4M± 9.7M 119 k ± 97 k 38 k ± 32 k

Newbler 18 0.9B ± 0.9B 87 k ± 117 k 2.1M± 2.3M 133 k ± 157 k 34 k ± 27 k

Fig. 6 The Boag database size comparison with the raw data in the RefSeq as well as the JSON version of the dataset
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variability in size reduction is presumably due to variabil-
ity in the number and size of files among phyla.
A second benefit of Boag is its ability to take advantage

of parallelization and distribution during computation.
Increasing the number of Hadoop mappers for a Boag
job decreases the query turnaround time. Taking the
four queries we posed in the introduction, we varied the
level of Hadoop mappers to show the speedup that re-
sults by adding additional Hadoop mappers to an ana-
lysis. Figure 7, demonstrates the exponential decrease in
required computation time with a corresponding increase
in the number of Hadoop mappers. As you can see, if the
number of mappers are not optimized for the amount of
computational infrastructure than the second query takes
approximately 350 minutes on 2 mappers to complete.
However, as more mappers are added, the time required
levels out to less than one minutes on assembly related
queries. This lower bound of this relationship is presum-
ably due to the overhead of splitting and gathering of data
across the mappers. As we add more mappers the running
time decreases for example with 256 mappers runtime is
22 minutes on the entire RefSeq. It is not difficult to see
the benefit of using a domain specific language like Boag
and Hadoop infrastructure to query much larger biological
datasets than RefSeq (Fig. 8).
Taking advantages of Hadoop based infrastructure, all

the queries in the Tables 5 and 6 that describe the gen-
ome assembly statistics before and after 2016 transition
required less than a minute.

Comparison between MongoDB and Boag
An analysis in Boag requires fewer lines of codes than
other languages available like MongoDB and Python

(Fig. 9). The file size in the Boag database is much
smaller than the JSON file used in MongoDB, as Boag
utilizes a binary format. Since the data schema in Mon-
goDB also needs to be saved along with the data, the
output files are larger and take longer to write (Fig. 6).
The JSON file size is larger and on average it is more
than double size of the RefSeq raw data. While experts
in MongoDB may write this query more efficiently, the
Boag language requires fewer lines of code (Fig. 9),
thereby providing an easier interface for bioinformati-
cians to explore big data.
The performance of MongoDB and Hadoop has been

previously compared [25], showing that the read-write over-
head of Hadoop has a lower read-write overhead (Table 7).

Comparison between Python and Boag
A general-purpose language like Python could also be
utilized to execute the same queries investigated here.
However, the Python code would be larger and require
learning how to use Python libraries. To illustrate, we
wrote an example program in Python to calculate the
top three most used assembly programs required only
five lines of code in Boag language. In Python, a similar
analysis required 38 lines of code (Fig. 10). Because Py-
thon needs to aggregate the output data, it needs more
lines of code and a longer runtime. This advantage in-
herent to domain-specific languages will speed up a re-
searcher’s ability to query large datasets.
More comparisons in terms of runtime and lines of

codes are given in Fig. 11. These tests were performed
on an iMac system with processor 4 GHz Intel Core i7
and 32 GB 1867 MHz DDR3 of memory.
Boag also provides an external implementation that

allows users to bring their own implementation from

Table 5 Kingdoms and average summary statistics for their genome assemblies (Years > =2016)

Tax ID Name Species Total length Scaffold-count ScaffoldN50 ContigCount ContigN50

2 Bacteria 92,290 4.3M± 1.6M 66 ± 78 0.9M± 1.4M 132 ± 176 0.39M± 0.86M

4751 Fungi 90 29M± 15M 139 ± 159 1.3M± 0.9M 360 ± 688 0.78M± 1M

2157 Archaea 338 2.9M± 0.98M 52 ± 40 0.38M± 0.43M 74 ± 121 0.53M± 71M

33,090 Viridiplantae 46 0.97B ± 0.88B 9.1 k ± 18.3 k 31M± 49M 38 k ± 43 k 1.8M± 4.9M

33,208 Metazoas 185 1.2B ± 0.95B 20.6 k ± 43.7 k 22M± 36M 53 k ± 77 k 2.5M± 7.9M

71,240 eudicotyledons (dicots) 37 0.91B ± 0.76B 6.4 k ± 10.6 k 26M± 50M 40 k ± 44 k 1.6M± 4.3M

Table 6 Kingdoms and average summary statistics for their genome assemblies (Years <= 2015)

Tax ID Name Species Total length Scaffold Count ScaffoldN50 ContigCount ContigN50

2 Bacteria 51,962 3.8M± 1.6M 45 ± 82 1.3M± 1.5M 126 ± 177 0.27M± 0.55M

4751 Fungi 202 2.9M± 17M 341 ± 699 2M± 1.7M 858 ± 1433 0.55M± 0.75M

2157 Archaea 470 29M± 1M 17 ± 16 1.35M± 1.17M 110 ± 126 0.38M± 0.7M

33,090 Viridiplantae 67 0.62B ± 0.68B 22.9 k ± 46.6 k 14.7M± 24.9M 52.5 k ± 71.6 k 0.47M± 1.8M

33,208 Metazoas 295 1.3B ± 1B 37.4 k ± 64.2 k 7.2M± 14M 118.6 k ± 119 k 0.13M± 1.2M

71,240 eudicotyledons (dicots) 46 0.754B ± 0.750B 26.3 k ± 53.5 k 17M± 27M 58.8 k ± 74 k 0.3M± 1.6M
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Python, Perl, Bash, etc. Not all users of the infrastruc-
ture can run any arbitrary scripts on the infrastruc-
ture. Scripts need to be converted to a DSL function
so that they will not cause security issues for the
infrastructure.

Conclusion
In this work, we presented Boag which is a domain-
specific language and shared data science infrastruc-
ture that takes advantage of Hadoop distribution for
large-scale computations. Boag ‘s infrastructure opens
the exploration of large datasets in ways that were
previously not possible without deep expertise in data
acquisition, data storage, data retrieval, data mining,
and parallelization. The RefSeq database was used as
an example dataset from Biology to show how to im-
plement the domain-specific language Boag for bio-
logical discovery. Boag is able to query the RefSeq
dataset in under 2 minutes for most queries, offering
a substantial time savings from other methods. Many

examples, tutorials, and a Docker container are avail-
able a GitHub repository. This paper provides a proof
of concept behind the Boag infrastructure and its abil-
ity to scale to much larger datasets. This is the first
step towards providing a shared data science infra-
structure to explore large biological datasets.
In future, we will integrate new data types including

the Non-Redundant protein database, biological ontol-
ogies, SRA, etc. We will also update the Boag database
and provide a publicly available web-interface for re-
searchers to run query on our infrastructure.

Methods
Choice of Biological repository for prototype
implementation
RefSeq is a relatively small dataset containing infor-
mation on well-annotated sequences spanning the
tree of life: plants, animals, fungi, archaea and bac-
teria. The smaller database size permits rapid itera-
tions of Boag applied to biology, and illustrates the

Table 7 Comparison between MongoDB and BoaG

Feature MongoDB BoaG

Lines of Code larger smaller because it abstracts details of data analysis

Data generation time longer due to the larger file faster because of Binary file

Data file JSON is 2.7 times larger than raw data Hadoop Sequence file 5 times smaller than raw data

Schema Flexibility Yes. Supports semi-structured data Yes. Schema and compiler can be modified

MapReduce Yes Yes

Fig. 7 Scalability of Boag programs (time is in Log base 2 (sec)). Queries 1,2,3 and 4 are the four questions investigated here
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benefits of a genomics specific language. RefSeq also
has a decent amount of metadata about genome as-
semblies and their annotations for which as far as
we know has not been explored as a whole. Unfortu-
nately, due to the rapid advancement of sequencing
technologies and genome assembly/annotation pro-
grams, deriving biologically meaningful information
from comparisons of assembly stats across the entire
dataset is not possible. However, as a demonstration
of the usefulness of a Boag infrastructure, we show
how straightforward it is to ask questions about how
the database and the metadata has changed over
time which gives insight into how improvements in
sequencing technology and assembly/annotation pro-
grams have affected the data contained in this re-
pository. These types of information would be

challenging to procure directly from the online
repository.

Design and implementation considerations
As a domain specific language careful consideration
must be taken in its design for Hadoop based infra-
structure implementation for RefSeq data. The over-
all workflow for Boag requires a program written in
Boag that is submitted to the Boag infrastructure
(Fig. 8 (a)). The infrastructure takes the submitted
program and compiles with the Boag compiler and
executes the program on a distributed Hadoop clus-
ter using a Boag formatted database of the raw data.
Boag has aggregators, which are functions that run
on the entire or a large subset of the database to
take advantage of the Boag’s database, which is

Fig. 9 Comparison of the code needed to query the number of assembler programs per taxon id run on Refseq Data. On the left side, the
MongoDB code needs eight lines of code in Python whereas the BoaG script needs only three lines of code. a. MongoDB query to calculate
number of assembler programs per taxon id. b. Equivalent Boag query needs fewer lines of code

a b
Fig. 8 Boag Architecture and Data Generation
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designed to distribute both data and compute across
a Hadoop cluster.

A Boag infrastructure provides the following benefits for
exploring large datasets

� A computational framework on top of Hadoop that
can query large dataset in minutes.

� An efficient data schema that provides storage
efficiency and parallelization.

� An expandable database integration.
� A domain-specific language that can be incorporated

in a container, Galaxy framework or along with any
language like R or Python in a Juypter notebook.

Genomics-specific Language and data schema
To create the domain-specific language for biology in Boag,
we created domain types, attributes and functions for the
RefSeq dataset that includes the following raw file types:
FASTA, GFF and associated metadata, as shown in Table 8,

Fig. 11 Example of Boag programs to compute different tasks on the full RefSeq dataset. The python programs were running on the single core.
The Hadoop infrastructure on Bridges has 5 shared nodes with 32 mappers. While these queries can be written in parallel in python, this needs
more lines of code and more programming skills to write a parallel code

Fig. 10 Comparison of Line of Code (LOC) and performance to answer query “ What are the top three most used assembly programs?” run on
Refseq Data. On the left side, the equivalent Boag code needs 38 lines of code in Python whereas the Boag script needs only five
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Genome, Sequence, Feature, and Assembler are types in
Boag language and taxid, refseq, etc are attributes of the
genome type. We created the data schema based on the
Google protocol buffer, which is an efficient data represen-
tation of genomic data that provides both storage efficiency
and efficient computation for Boag.

Output Aggregators in Boag
Table 9 shows the predefined aggregators in the Boag
language for example top, mean, maximum, mini-
mum, etc. These aggregators are also available in
traditional RDBS and MongoDB [27], however Boag is
flexible enough to define new aggregators. Boag pro-
vides a specific type called output types that collect
and aggregate data and provide a single result. When
a Boag script is running in parallel, it emits values to
the output aggregator that collects all data and pro-
vides the final output. Aggregators also can contain
indices that would be a grouping operation similar to
traditional query languages.

Boag database and new data type integration
The Boag infrastructure is designed to fully utilize
data parallelization facilities in Hadoop infrastructure.
The raw data for file types and metadata was parsed
into a Boag database on top of a Hadoop sequence
file (Fig. 8 (b)). A compiler, file reader, and converter
were written in Java to generate this database and are
provided in the GitHub repository (https://github.
com/boalang/bio/tree/master/compiler). In order to
integrate new dataset the data schema in protocol
buffer format needs to be modified and a data reader
in Java that reads the raw data, for example GFF,
TXT, Fastq, etc, is needed that can convert it to a
binary format of Boag database. An additional ex-
ample is provided in the GitHub repository.
Boag efficiency was tested on a shared Hadoop cluster

on Bridges with 5 nodes and up to 256 map tasks.

Data availability
All scripts, step by step process of scientific discovery,
and additional examples of Boa queries used in this

Table 8 Domain types for Genomics data in BoaG

Type Attributes Details

Genome taxid Taxonomy ID of each species

refseq Refseq ID of the GFF file

Sequence List of sequence reads in each
GFF file [26].

AssemblerRoot List of assembly programs associated
with this genome

accession Accession number

Sequence header Header of Sequence

FeatureRoot List of features including
exon,gene,mRNA, and CDS associated
with this sequence

seq Actual DNA sequences from FASTA
files

FeatureRoot refseq This field shows the key ID

feature This field is the list of features
associated with this ID

Feature accession Accession code of the Sequence

seqid Sequence ID

source A text qualifier that describes the
algorithm or procedure that generated
this feature.

ftype Type of the feature

start starting point of the feature

end End point of the feature

score Score of the feature. This is a floating
point number.

strand + and - for positive and negative
strand respectively

phase Phase of the feature. The phase is one
of the integers 0, 1, or 2

Attribute List of attributes for each feature

parent Shows the parent of the attribute

Attribute id Attribute ID

tag Attribute tag including gbkey etc.

value Value of the tag

AssemblerRoot Assembler List of assembly programs

total-length Total length or genome size (base pair)

total-gap-
length

Total gap length after genome
assembly

scaffold-N50 Scaffold N50 metric

scaffold-count Scaffold count metric

contig-N50 Contig N50 metric

contig-count Contig count metric

Assembler name Assembly program used to assemble
the genome

desc Program attributes: program name,
program version, etc.

Table 9 The BoaG aggregators list

Aggregator Description

MeanAggreagtor Calculates the average

MaxAggreagtor Finds the maximum value

SumAggregator Calculates the sum of the emitted values
to the reducer

MinAggregator Finds the minimum value

TopAggregator Takes an integer argument and returns the top
elements for the given argument

StDevAggregator Calculates the standard deviation
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paper can be found in our repository. The raw data files,
Boag database and JSON MongoDB files can be obtained
from an online repository (https://boalang.github.io/
bio/). A Docker container with Boag scripts, a Boag se-
quence file of a subset of the raw files and instructions
on how to use Boag can also be downloaded from this
location. We have generated a subset of GFF files and
assembly statistics files for all fungi data contained in
RefSeq. This data subset is 5.4 GB and can be used to
test Boag queries for reproducible results.

Run Boag on Docker container and Jupyter
For the fungal data subset, users can run a container-
ized version of a 3 node Hadoop cluster for Boag as
well as Jupyter versions on a single machine. These
integrations with current technologies can help users
test and run queries and reproduce our results. In-
structions on how to run a Docker version and a
Jupyter version of Boag are available on this website:
https://boalang.github.io/bio/.

Application of Boag to the RefSeq database
A total of 153,848 annotations (GFF), assembly (FASTA)
files, and metadata were downloaded from NCBI RefSeq
[28] and written to a Boag database. Metadata included
genome assembly statistics (Genome size, scaffold count,
scaffold N50, contig count, contig N50) and assembler
software used to generate the assembly from which the
genome annotation file was created.
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