
A Study of Repetitiveness of Code Changes in
Software Evolution

Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, and Hridesh Rajan
Iowa State University

Email: {hoan,anhnt,tung,tien,hridesh}@iastate.edu

Abstract—In this paper, we present a study of repetitiveness
of code changes in software evolution. Repetitiveness is defined
as the ratio of repeated changes over total changes. Focusing
on fine-grained code changes, we model a change as a pair
of old and new AST sub-trees within a method. A change is
considered repeated within or cross-project if it matches another
change having occurred in the history of the project or another
project, respectively. We report the following important findings.
First, repetitiveness of changes could be as high as 70-100%
at small sizes and decreases exponentially as size increases.
Second, repetitiveness is higher and more stable in cross-project
setting than in within-project one. Third, fixing changes repeat
similarly to general changes. Importantly, learning code changes
and recommending them in software evolution is beneficial with
accuracy for top-1 recommendation of over 30% and top-3 of
nearly 35%. Repeated fixing changes could also be useful for
automatic program repair.

I. INTRODUCTION

In a project, software artifacts are written and maintained
by human beings. “To err is human”, thus, software is also
defect-prone. Developers could repeat their own mistakes or
unknowingly repeat the errors from others. A reason for that is
the nature of software reuse and its practice by software engi-
neers to save development effort. Common programming tasks
expressed in programming languages may lead to similarity
in source code. Software reuse could be at different levels of
abstraction. Multiple software projects could share common
specifications, designs, or algorithms. They may reuse the
same libraries and frameworks, resulting in API usage patterns
or common programming idioms in source code. Such similar
code may lead to the similar software changes and repeated
defects and fixes within or across different projects.

Several approaches in mining software repositories (MSR)
have taken that observation and advanced its applications in
automating several software evolution and maintenance tasks.
An example application is automatic program repairing [11],
[17] based on previously seen fixing patterns in the same
or different projects. PAR [17] is an automatic pattern-based
program repair method that learns common patterns from
prior human-written patches. FixWizard [29] recommends
fixes based on the code peers/clones and code with similar API
usages. Weimer et al. [11] proposed GenProg, a patch genera-
tion method that is based on genetic programming. Other types
of application are automated library update, language/library
migration, etc. SemDiff [5] is a method to learn from previous
updating changes to a framework in order to update its client
code. LibSync [28] learns adaptation change patterns from

client code to update a given program to use the new library
version. Zhong et al. [34] mine common code transformation
to support language migration.

While those approaches have gained much success in MSR,
they focus on respective application domains and are often
studied on small-scale settings with small sets of subject
projects. There is still no large-scale, systematic study on how
repetitive software changes are across the histories of software
projects, what are the repetitiveness characteristics of software
changes, or whether fixing changes exhibit different repetitive-
ness than general ones. To address them, we conducted a large-
scale study with the following key research questions: R1) how
code changes repeat in software evolution, and R2) how useful
those repeated and previously seen changes/fixes within or
across different projects are. The answers for those questions
not only provide the empirical evidences but also could
enhance those aforementioned MSR approaches. For example,
a genetic programming-based automatic program repair could
avoid unnecessary mutations by considering the information
on the popular types and sizes of program elements that have
been used in fixes for certain program contexts, thus, reducing
their search space for possible fixes. Language migration or
library update methods could benefit in similar manners when
the repetitive characteristics of changes are studied.

In our study, we collected a large-scale data set consisting of
2,841 Java projects, with 1.7 billion lines of code (LOCs) at the
latest revisions, 1.8 million code change revisions (0.4 million
fixing ones), 6.2 million changed files, and 2.5 billion changed
LOCs. We extracted consecutive revisions and compared their
abstract syntax trees (ASTs). A change is modeled as a pair of
subtrees in the ASTs. A change (s, t) is considered as match-
ing another change (s′, t′) if s and s′, and t and t′ structurally
match with the abstracting on the literal and local variables’
nodes. The size of a change (s, t) is measured as the height
of the sub-tree s in the source AST. Its type is defined as the
AST node type of s. We perform the analysis in two settings:
within and cross-project. In the within-project setting, a change
in a project is considered as repeated if it matches another
change previously occurred in the project’s history. In the
cross-project setting, it is considered as repeated if it matches
another change occurring in another project. Repetitiveness is
computed via the number of repeated changes over the total
number of changes. We studied repetitiveness of changes in
three dimensions: size, type, and general/fixing changes.

The key findings in our study include the following:

1) Repetitiveness is very high for changes of small sizes (up
to 60-100% for the changes of sizes 1 and 2), however, it
decreases exponentially as size increases. Repetitiveness
for changes with sizes larger than 6 is very small. Thus,
the above automatic tools should consider change frag-
ments with the sizes from 2-6 (changes of size 1 are on
literals, identifiers, modifiers, etc).

2) Repetitiveness also varies by syntactic types of changes.
Changes involving simple structures (e.g. array accesses,
method calls) are highly repetitive, while those with
compound structure (e.g. control/loop statements) are
less. In addition, most popular types of fixing changes
include method calls, infix expressions, condition (e.g. if)
and loop statements (e.g. for, enhance for). Thus, program
repair tools could focus on those types with small sizes
in their search space, and then combine them.

3) Cross-project repetitiveness is generally higher and more
stable than within-project one. In addition, while cross-
project repetitiveness of fixing changes is as high as
that of general changes and even higher in small change
sizes, within-project repetitiveness of fixing changes is
low. This implies that program repair tools should not
rely solely on the changes in a single project, but rather
make use of repeated bug fixes across different projects.

4) To learn the recommending capability of repetitive
changes/fixes, we conducted an experiment in which
we wrote a simple tool to recommend different options
of changes/fixes for a given code fragment based on
the collected repetitive changes/fixes. We found that
accuracy for top-1 fixing recommendation is over 20%,
top-3 is nearly 25%. The corresponding numbers for
general changes are 30% and 35%. This result shows
a promising future for more sophisticated learning ap-
proaches to the aforementioned software maintenance
problems.

Sections II-IV present our data collection and experimental
procedures. Sections V-VII present the results and our analysis.
Section VIII is the related work. Conclusions appear last.

II. CONCEPTS

A. Illustration Example
Let us start with an illustration example on code change

and repetitiveness. Figure 1 shows two changes on two if state-
ments. They are considered as fine-grained changes because
they occur within individual methods. Both of them include a
replacement of a literal (1 or 10) by a variable (b or y) and
an addition of an else branch. The variables and literals in the
pairs a and x, b and y, 1 and 10 have the same roles. That
is, if we replace a, b, and 1 with x, y, and 10 respectively,
we can derive the second change from the first. Therefore, we
consider the second change repeat the first (or vice versa).

In this paper, we aim to study the characteristics of such
repeated changes, for example, how often they occur, how
large they are, what are the popular types, etc. In the next
section, we will formally define the concepts such as code
changes and repeated code changes.

Source fragment Target fragment

Change 1 if (a >= b)
a = a − 1;

if (a > b)
a = a − b;

else
break;

Change 2 if (x >= y)
x = x − 10;

if (x > y)
x = x − y;

else
break;

Fig. 1. An example of code change

B. Code and Code Change Representation

As writing and modifying code, developers would think
of code in terms of programming constructs such as func-
tions, statements, or expressions rather than lines of code or
sequences of lexical tokens. For example, in the above illustra-
tion example, one would think about the code (before change)
as an if statement, and modify it by replacing an operand in
an infix expression by another, and adding an else branch.

To address this phenomenon, in this study, we model source
code and code change in terms of program constructs rather
than the lower levels of representation such as code tokens
or lines of code. In a program language, a programming
construct is often defined as a syntactic unit and represented as
a subtree in an Abstract Syntax Tree (AST). For example, an
if statement is represented as an AST’s subtree, in which the
root node specifies its type (i.e. if statement), and the children
nodes represent its sub-constructs, i.e. an expression for the
predicate, and two code blocks for two branches.

Definition 1 (Code Fragment): A code fragment in a source
file is a (syntactically correct) programming construct and is
represented as a subtree in the abstract syntax tree of the file.

We consider a code change as a replacement of a code
fragment by a different code fragment. Since a code fragment
is modeled via an AST, we formulate code change as follows:

Definition 2 (Code Change): A code change is represented
as a pair of ASTs (s, t) where s and t are not label-isomorphic.

Since AST are labeled trees, the condition of not being
label-isomorphic is needed to specify that the code fragments
before and after change are different. In this definition, s or
t is called source or target tree, respectively. Either of them
(but not both) could be a null tree. s or t is a null tree when
the change is an addition or deletion of code, respectively.

To check two code changes for repetitiveness, we could
match their source and target trees correspondingly. However,
as seen in the illustration example, repeated changes might
have different variable names or literal values. Therefore, we
need to perform normalization to remove those differences
before matching. An AST tree t is normalized by re-labeling
the nodes for local variables and literals. For a node for a local
variable, its new label is the node type (i.e. ID) concatenating
with the name for that variable via alpha-renaming. For a
node for a literal, its new label is the node type (i.e. LIT)
concatenating with its data type.

Figure 2 shows the AST trees for the code changes in the
illustration example after normalization. As seen, nodes for

IF

INFIX >= ASGN

ID v1 ID v2 ID v1 INFIX

ID v1 LIT NUM

IF

INFIX > ASGN

ID v1 ID v2 ID v1 INFIX

ID v1

BREAK

ID v2

IF: if statement

INFIX: infix

expression

ASGN: assignment

ID: identifier

LIT: literal

NUM: number

BREAK: break

statement

E1
E2 E1'A A’

E2'
L N

Fig. 2. Tree-based Representation of Code Changes

variables a and x are re-labeled as ID v1 while the ones for b
and y have the label of ID v2, since v1 and v2 are the respective
names for them after alpha renaming. The nodes for literals 1
and 10 have the same label LIT NUM. Thus, after normalization,
two changes have the same tree-based representation. Using
normalization, we define repeated code changes as follows:

Definition 3 (Repeat Code Change): A code change (s, t) is
a repeated change of another one (s′, t′) when s′ and s, and
t′ and t are label-isomorphic after normalization.

We want to study the repetitiveness of changes in a project
in both scenarios: within its history, and across the histories
of different projects. Therefore, we define:

Definition 4: A change in a project P is a repeated change
within a project if it is a repeated change of another one occur-
ring in an earlier revision of P . It is a cross-project repeated
change if it is a repeated change of another in other project(s).

Since we want to study the repetitiveness of code changes
on types and sizes, we need to define them. We use the AST
type of the source tree as the type of the code changes since we
want to learn what types of code fragments that are frequently
changed. For size, in literature, size of a tree is often defined as
its number of nodes. However, for source code, the number of
nodes of ASTs highly vary. For example, a method call might
have no children (e.g. no parameter) or many children (e.g.
many parameters). (In our experiment, some trees might have
thousands of nodes). In contrast, tree height (i.e. the number
of nodes along the longest path from the root node to a leaf
node) varies less (often from 1 to 10). Thus, we choose tree
height as a measurement of change size. We define type and
size as the following.

Definition 5 (Change Type and Size): Type and size of a
code change (s, t) are AST type and the height of s (or of t
if s is a null tree), respectively.

For example, in the illustration example, two code changes
have type of if (i.e. changes to if statements). Their size is 4.

III. RESEARCH QUESTIONS AND METHODOLOGY

A. Research Questions

In this study, we are interested in studying the popularity
and potential usefulness of repeated code changes and fixes.
Therefore, the first research question we want to answer is

R1. How repetitive code changes and bug fixes are in
software evolution?

TABLE I
COLLECTED PROJECTS AND CHANGES

Projects 2,841
Total source files 16 millions
Total LOCs 1.7 billions

Total revisions 3.6 millions
Revisions having code changes 1.8 millions
Revisions having fixing changes 0.4 millions
Total changed files 6.2 millions
Total LOCs of changed files 2.5 billions

Total changed methods 8.6 millions
Total AST nodes of changed methods 1.3 billions

Total changed AST nodes 89 millions
Total detected changes 213 millions

We are interested in repeated code changes in different
dimensions. First, we want to know how large they are (i.e.
size of change) and what kind of program constructs that they
often occur on (i.e. type of change). Such information will
help designers of development tools use repeated changes to
focus more on the sizes and types of changes that most likely
repeat. In addition, whether changes repeat in within and cross-
project settings is also important. If they repeat frequently in
the within-project setting, then historical changes/fixes of a
project will be a useful source for predict and recommend
future changes/fixes of that project. If they repeat frequently in
the cross-project setting, then we can learn changes/fixes from
other projects to use for a project, especially when it is newly
developed. Lastly, we want to study whether the respectiveness
of fixing changes, an important type of changes, is different
from that of general changes.

R2. How useful repeated and previously seen changes and
bug fixes are?

We are interested in the potential use of repeated changes
and fixes to recommend changes and fixes for a project in its
development, maintenance, and evolution. We expect that, if
repeated changes and fixes are popular, a tool could learn from
frequently repeated changes and fixes for recommendation.

B. Data Collection

To answer those questions, we have collected a large dataset
of code changes. First, we downloaded from sourceforge.net,
a hosting service for open-source projects, the development
history of all projects written in Java and using SVN for

version control. We focused on only Java and SVN to reduce
engineering effort and simplify the classification of change
types (e.g. we do not have to define common AST represen-
tation for different languages). Future research could include
other languages and version control systems. We filtered out
the projects with very short development histories, i.e. projects
with less than 100 revisions are discarded.

Table I summaries our final dataset. It contains 2,841
projects which at their last snapshots have in total 16 millions
of source files and 1.7 billion non-blank, non-commented lines
of code. The projects cover variety of domains and topics, and
have been written by thousands of developers. We downloaded
their repositories to our server for faster processing.

In term of changes, the projects in our dataset have in
total 3.6 million revisions, among them, 1.8 million revisions
having code changes and 0.4 millions having fixing changes.
To detect fixing changes, we used the popular key-word based
approaches [35], in which if the commit log message of a
revision has the keywords indicating fixing activities, the code
changes in that revision are considered as fixing changes.

We processed all 3.6 million revisions and parsed in total
6.2 million changed source files with the total size of 2.5
billion lines of code. Our change detection algorithm detected
8.6 million changed methods with the total size of 1.3 billion
AST nodes. From those methods, it detected 213 million fine-
grained code changes made from 89 million changed AST
nodes. The processing time was 90 hours.

C. Methodology Overview

In this section, we describe our process to collect code
changes/fixes from the corpus to build our change database,
search for repeated changes/fixes, and compute their repeti-
tiveness. This process composes of three steps and is applied
to each revision of every project in the corpus.

1) Detecting all code changes for each revision. Since
we focus on the fine-grained changes, we collect only
changes within the bodies of changed methods.

2) Updating detected changes to our database. The database
is globally accessed for all projects to improve the per-
formance in the study of cross-project repeated changes.

3) Computing the repetitiveness for all changes in both
within- and cross-project settings for different dimen-
sions: size, type, and fix/non-fixing.

Let us explain in detail these steps in the next sections.

D. Detecting Code Changes

1) Coarse-grained Differencing: The purpose of this step
is to map methods before and after a commit. We use our
origin analysis tool (OAT) [28] for this step. For each revision,
given as set of changed files provided by the version control
system, OAT identifies the mapping for each class/method
before and after the change. We extend OAT to support also
mapping of classes’ instance/static initializers, and treat them
similarly as methods. The un-mapped methods and initializers
are discarded. All mapped ones are used for fine-grained
differencing in the next step.

2) Fine-grained Differencing: To derive those fine-grained
changes within the body of each changed method, we use our
prior AST differencing algorithm [27]. Given a pair of methods
before and after the change, the algorithm parses them into
ASTs and finds the mapping between all the nodes between
two trees. The key idea of this algorithm is that it maps two
nodes based on their node types and the structural similarity
between the two sub-trees rooted at them. The unmapped
nodes are considered as deleted in the old tree or added in
the new tree. Along with the mapping, the algorithm also
provides the information if the mapped nodes have change
in their labels or in their descendants.

For example, in Figure 2, the algorithm detects that the
literal node L is deleted under the infix expression node E2

and the identifier node N is added under E′
2. The node E2, in

turn, is mapped with E′
2 with the same label and has change

in its children nodes. Similarly, the top if statements and the
assignments A are mapped with changes in descendent nodes.
It can also identify that E1’s operator is modified and a break
statement is added as the else branch of the if statement.

3) Collecting Code Changes: For each pair of trees T
and T ′ of a changed method, we aim to collect all changes
with different heights (sizes). Our tool traverses them in pre-
order from the roots to get the changes. If a node n in T is
mapped to a node n′ in T ′ and they change in either labels or
children nodes, a code change represented by a pair of trees
(T (n), T ′(n′)) is extracted, where T (n) and T ′(n′) are the
trees rooted at n and n′, respectively. If a node n in T does
not have any mapped nodes in T ′, a change of (T (n), null) is
extracted. Similarly, if a node n′ in T ′ is un-mapped, a change
of (null, T ′(n′)) is extracted. Note that, if a tree is deleted or
added, all of its sub-trees will also be collected into the change
database because the changes of the sub-trees constitute to
the changes of that root tree. During collecting the changes,
the parent-child relation between trees are also recorded. This
information will be used in recommending changes.

Figure 3 shows all collected changes with different heights
(sizes) from 1-3 for the illustration example in Figure 1. The
change of height 4 is shown in Figure 2. Note that, one change
of small size can be included in a larger one. We analyze
change repetitiveness when the code fragment size increases.

E. Building Change Database and Computing Repetitiveness

1) Design Strategies: We design our data structure and
algorithm with the key idea that a change and its repeated one
have the same type and size, and the same pair of source and
target ASTs after normalization. If we create a hashcode for
each change by concatenating the hashcodes of its normal-
ized source and target trees, repeated changes will have the
same hashcode. Thus, if the changes are grouped based on
hashcodes computed via that scheme, repeated changes will
be hashed to the same group, which have the same size and
type. We used those groups to compute the number of repeated
changes by size and by type.

Based on that idea, we extracted the changes in our dataset
into a change database. This database is a dictionary of change

LIT NUM

ID v1

BREAK

INFIX >=

ID v1 ID v2

E1 INFIX >

ID v1 ID v2

E1'
INFIX

ID v1 LIT NUM

E2
L

INFIX

ID v1 ID v2

E2'
N

ASGN

ID v1 INFIX

ID v1

E2A ASGN

ID v1 INFIX

ID v1 ID v2

A’

E2'
N

LIT NUM

L

null

null

null

Height = 1 Height = 2 Height = 3

Fig. 3. Extracted Code Changes for Different Heights for the Example in Figure 2

1 function BuildDatabase(ProjectList L, ChangeDatabase D)
2 foreach project p in L
3 foreach revision r in RevisionList(p)
4 foreach change c ∈ ChangeList(r)
5 h = HashCode(c)
6 if D not contain h
7 D[h] = new ChangeGroup(c)
8 D[h].Count[p]++
9 end

10
11 function Compute(ChangeDatabase D)
12 foreach group c in D
13 h = HashCode(c), s = Size(c)
14 foreach project p in D[h].Count
15 N [p, s]+ = D[h].Count[p]
16 Nw[p, s]+ = D[h].Count[p] − 1
17 if (D[h].Count.size > 1)
18 Nc[p, s]+ = D[h].Count[p]
19 foreach project p and size s
20 Rw[p, s] = Nw[p, s]/N [p, s]
21 Rc[p, s] = Nc[p, s]/N [p, s]
22 end

Fig. 4. Algorithm for Extracting and Computing Repetitiveness

groups indexed by hashcodes computed by aforementioned
method. Each change group contains a hash table to map
a project’s id to the number of changes having the same
hashcode in that project. This hash table is used to compute
the within and cross-project repetitiveness. That is, if a project
p has a count np, then p will have np − 1 changes repeated
within p. If the hash table has another project, then all np

changes of p are counted toward cross-project repetitiveness.
2) Detailed Algorithm: Figure 4 lists the algorithm for

building the change database (function BuildDatabase, lines 1-
9) and computing the repetitiveness (function Compute, lines
11-22). To build the change database, the algorithm processes
each change c in each project p. First, it computes the hashcode
for c (line 5). If the database does not have a change group
for that hash code, a new change group is created for it (lines
6-7). Then, the count value for p is updated (line 8).

Function Compute (line 11) computes repetitiveness in size.
N[p,s] is the total number of changes of size s in project p.
Nw[p,s] and Nc[p,s] are the numbers of changes repeated within
and across projects, respectively. They are updated using the
above idea (lines 15-18). After they are computed, within and
cross-project repetitiveness for p at size s, Rw[p,s] and Rc[p,s],
are computed as the ratios of Nw[p,s] and Nc[p,s] over N[p,s],
respectively. Computation for type is similar (not shown).

IV. ANALYSIS RESULTS

A. Boxplot Representation of Change and Fix Repetitiveness

Figure 5 shows repetitiveness results of general and fixing
changes in both within- and cross-project settings. For each
change size s from 1-10, we computed the repetitiveness R(s)
for all corresponding changes of every project. Thus, for each
size s, we have a distribution of 2,841 projects as data points.
This distribution is plotted as a box plot, with five quartiles:
5% (the lower whisker), 25% (the lower edge of the box), 50%
(the middle line), 75% (the upper edge of the box), and 95%
(the upper whisker). There are 10 box plots for 10 sizes. Let us
explain the leftmost boxplot in Figure 5 for the within-project
repetitiveness of general changes of size 1.

1) The 50% quartile, i.e. median, is at 72%. Since the
median could be seen as the center of the distribution, one
could say that on average, the projects in our dataset have 72%
of their size-1 changes repeated within individual project.

2) The 25% quartile is at 62%, implying that more than
75% of the projects have at least 62% those changes repeated
within a project.

3) The 75% quartile is at 80%, meaning that at least 25%
of projects have those changes repeated more than 80%.

4) The 95% quartile is 94%, suggesting that, at least 5%
of total projects have 94% of their size-1 changes repeated
within a project.

5) The inter-quartile (difference between 25% and 75%
lines) is 18%, referring to the spread of the distribution.

B. Exponential Relationship of Repetitiveness and Size

Comparing the box plots for different change sizes in both
within and cross-project settings, we see that repetitiveness
is very high for small changes, but it significantly decreases
when the change size increases, as expected. For example, in
the cross-project setting, size-2 changes have median repeti-
tiveness of more than 60%, but that for size-6 changes drops
below 10%. The repetitiveness of larger changes (size of 7-10)
is very small (less than 2% on average).

We modeled R(s) and s with several classes of simple
curves, and found that the exponential curve R(s) = αeβs

represents their relationship the best. We used the least square
method to compute two parameters α and β for every project.

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Within−project Changes

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cross−project Changes

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Within−project Bug Fixes

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cross−project Bug Fixes

Fig. 5. Repetitiveness of Code Changes and Fixes over Change Size for all 0,000 Projects in the Corpus

TABLE II
R2 OF FITTED EXPONENTIAL CURVE TO REPETITIVENESS

Setting Change Median ≥ 0.90

Within-Project General 0.99 93%
Fixing 0.99 90%

Cross-Project General 0.98 96%
Fixing 0.97 88%

The goodness of fit is measured by the coefficient of determi-
nation R2. The closer R2 is to 1, the better the fit is.

Table II summarizes the goodness of fit. As seen, it is
very high. For example, for general changes in the within-
project setting, median R2 is 0.99, and 93% of projects have
R2 of at least 0.90. Results in the cross-project setting are
similar. The median R2 is 0.99, and 96% of projects have R2

of at least 0.90. This high level of fit for most of projects
in the dataset implies that R(s) has a strong exponential
relationship to s. That is, repetitiveness of code changes
decreases exponentially when change size increases.

As an implication, the automatic program repair or library
update tools should focus on the change fragments with the
syntactic units of the height from 2-6 to reduce the search
spaces of solutions (size-1 changes are on literals/variables).

C. Within and Cross-project Repetitiveness Comparison

As seen in Figure 5, the box plots for the sizes from 1-5 in
the cross-project setting are higher than those in the within-
project setting. For example, for size-1 changes, the median

cross-project repetitiveness is 85%, while the within-project
one is 72%. For size-2 changes, the corresponding numbers
are 63% and 44%.

To statistically verify this observation, we use the paired
Wilcoxon test to compare the distributions of R(s) in the
within-project and cross-project settings. All the tests for
sizes from 1 to 5 infer that cross-project repetitiveness is
statistically higher than within-project repetitiveness. For
large sizes, changes repeat about the same or slightly less
frequently in the cross-project setting.

For all sizes, the inter-quartiles of box plots in the cross-
project setting is always shorter than those in the within-
project one. For example, the inter-quartile for cross-project
repetitiveness with size-1 changes is 7%, while that in the
within-project setting is 18%. However, at the size 5, the
difference is insignificant, with the corresponding numbers
of 11.97% and 11.82%. Nevertheless, that result implies that
repetitiveness in cross-project setting is more stable. Thus,
repeated changes are more likely to be found across projects.

D. Repetitiveness of Bug Fixes

As seen in Figures 5 and Table II, repetitiveness of fixing
changes is similarly to that of general changes. That is, at
smaller sizes (s from 1 to 2), bug fixes repeat frequently, with
repetitiveness usually higher than 60% in the cross-project
setting. At larger sizes (s from 6-10), fixing changes repeat
less frequently, with repetitiveness often less than 10%. Thus,
the automatic program repair methods should focus on the
change fragments with the small sizes from 2-5.

Importantly, we conducted a paired Wilcoxon test and found

that at smaller sizes (from 1 to 5), cross-project repetitive-
ness of fixing changes is statistically higher than that in
the within-project setting. As an example, the median of
cross-project repetitiveness for size-2 fixing changes is 65%
in comparison with 21% in the within-project setting. The
corresponding numbers for size-3 fixing changes are 42% and
8%. As seen, within-project repetitiveness of fixing changes
is low. Those results suggest that automatic patching and
program repairing tools should not rely solely on the changes
in an individual project, but rather make use of repeated bug
fixes across different projects.

In Figure 5, repetitiveness for cross-project changes is
comparable to that for cross-project bug fixes. However, our
paired Wilcoxon test results showed that at the small sizes
(1-3), repetitiveness of fixing changes is statistically higher
than that of general changes. This suggests that the bug fixes
tend to be at small sizes. Thus, automatic patching tools could
start with small changes and gradually compose them.

E. Repetitiveness on Representative Projects

While previous sections present the results on the analysis
on all 0,000 projects in our dataset, this section presents
the results for a small set of the representative projects for
further detailed analysis. Figure 6 plots the cross-project
repetitiveness values of general changes (in solid lines) and
fixing changes (in dashed lines) for those projects. As seen,
although following the same trends, the curve for one project
might look different from another. For example, the curve for
general changes in jedit is higher than that of jitterbit (they have
similar α parameters, however, β for jedit is larger than that
for jitterbit). Figure 6 also illustrates that at smaller sizes, some
projects have the repetitiveness of fixing changes higher than
that of general changes, such as jitterbit or springframework.

Figure 7 plots for the same projects in the within-project
setting. As seen, the repetitiveness of fixing changes is lower
than that of general changes. In some projects such as jquant
or pulse-java, the difference is quite significant.

F. Repetitiveness and Change Type

1) Change Type: We perform another analysis for the
repetitiveness of changes classified based on the types of the
corresponding code structures. Given a change as a pair of
AST sub-tree (s, t), its type is defined as the AST node type
of s. For example, if s is a sub-tree for an if statement, that
change is classified as a change to an if statement.

The repetitiveness of a change type is computed as the
ratio of the number of repeated changes of that type over the
total number of changes of that type in all projects (we did
not compute separately for each project). From the previous
results, we focused on the repetitiveness in the cross-project
setting. In addition to general changes, we also computed the
repetitiveness of fixing changes.

We choose 30 most popular AST node types and divide
them in 4 groups. The Array group contains nodes representing
program elements related to arrays, such as an array access or
array declaration. The Call group contains nodes representing

TABLE III
CROSS-PROJECT REPETITIVENESS AND CHANGE TYPE

General changes Fixing changes
Group Type Total Repeat Total Repeat

Array array declaration 321670 0.82 51522 0.82
array access 888224 0.65 145001 0.66
array initializer 201187 0.61 31181 0.61
array creation 232462 0.56 37669 0.58

Call super constructor 80615 0.72 10775 0.71
constructor 36504 0.56 5537 0.58
super method 64037 0.45 11170 0.47
class instantiation 3425828 0.43 547945 0.43
field access 1099426 0.42 176047 0.42
method 23088645 0.40 4117854 0.42
super field access 5430 0.18 969 0.21

Expression postfix 333142 0.92 59119 0.90
prefix 766036 0.61 159937 0.60
infix 5875878 0.53 1201842 0.54
instance of 223488 0.34 49456 0.37
cast 1072131 0.33 195376 0.35
conditional 202497 0.22 41347 0.23

Statement case 357582 0.62 51953 0.60
throw 377629 0.55 95576 0.52
assert 38546 0.38 8144 0.39
catch 535793 0.37 131942 0.32
if 4454870 0.10 927589 0.11
while 198858 0.06 39759 0.06
try 786262 0.05 172699 0.06
for 417898 0.05 74852 0.05
synchronized 51432 0.05 12087 0.04
enhanced for 373466 0.04 68926 0.05
initializer block 11082 0.03 1899 0.02
switch 123181 0.02 21391 0.03
do while 11735 0.01 2460 0.01

the elements related method/constructor calls and field ac-
cesses. The Expression group is for expressions. The Statement
group contains all statements such as if, while, try, throw, etc.

2) Repetitiveness: Table III lists the total number and
repetitiveness of changes computed for those types. At a first
glance, the number of changes is different for those types. For
example, method calls, infix expressions, and if statements
have the most changes, while changes to constructor calls,
super field accesses, and do statements are less.

The repetitiveness for changes also vary according to change
types. It is very high for changes related to arrays, expressions,
and calls (often 40-80%), while it is very low for common
statements such as if or while (often no more than 10%). It is
interesting that changes to method calls are the most pop-
ular and frequently repeated (40% repetitiveness), while
changes to if statements are also popular but repeat much
less frequently (just 10% repetitiveness). Change size is a
possible explanation for this observation. Array accesses and
method calls (especially super calls) are structurally simpler
than the compound statements (e.g. if or while), thus they could
repeat more. For example, 92% of changes to array accesses
have sizes of 1-3, while only 3% of changes to if statements
have such small sizes. In addition, among statements, the small
ones such as case, throw, and catch statements also repeat more
frequently than the larger ones (37-62%).

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jedit

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jitterbit

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jquant

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lateralgm

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pulse−java
m

k.
ve

ct
or

(d
at

[id
[i]

,]
)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

springframework

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

Fig. 6. Cross-project Repetitiveness of General (solid line) and Fixing Changes (dashed line)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jedit

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jitterbit

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jquant

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lateralgm

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pulse−java

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

springframework

m
k.

ve
ct

or
(d

at
[id

[i]
,]

)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
k.

ve
ct

or
(f

ix
[id

[i]
,]

)

Fig. 7. Within-project Repetitiveness of General (solid line) and Fixing Changes (dashed line)

1 function Recommend(Tree s, ChangeDatabase D)
2 List T
3 Changes C = D.GetChangesWithSourceTree(s)
4 foreach c = (s, r) ∈ C
5 bestScore = ComputeScore(s, r,D)
6 As = GetKLevelAncestors(s)
7 Ar = GetKLevelAncestors(r)
8 foreach (p, q) ∈ As × At

9 score = ComputeScore(p, q,D)
10 if score > bestScore bestScore = score
11 T .AddAndSortByScore((r, bestScore))
12 return T
13 end
14
15 function ComputeScore(Tree s, Tree r, ChangeDatabase D)
16 Ns = number of occurences of changes having s as source tree
17 Ns,r = number of occurences of change (s, r)
18 return Ns,r/(1 + Ns)
19 end

Fig. 8. Algorithm for Recommending Changes

Importantly, as seen in Table III, cross-project repetitiveness
of bug fixes is high, especially for small program constructs.
It is as high as in general changes and much higher than the
fixing changes in the within-project setting. This result on
change repetitiveness over change size and type suggests that
the aforementioned automated program repair should focus on
the fixes with small sizes and of highly repetitive types such
as array access, method calls, and if/case statements.

V. CHANGE RECOMMENDATION

A. Experiment Setting

To learn the recommending capability of repetitive changes
and fixes, we conducted an experiment in which we wrote a
simple tool to recommend different options of changes/fixes
for a given code fragment based on the collected repetitive
changes/fixes. For each project, we ran the tool on all the
changes in a chronological order. Such a change is represented
as a pair of trees (s, t), where s is for the original code frag-
ment (source) and t is for the replacing one (target). The tool
takes s and returns a ranked list T (s) of k recommendations.
If t matches any result in that list, we count this as a hit, i.e.
a correct recommendation. The overall accuracy is defined as
the ratio between the number of hits over the total number
of recommended cases. The process is repeated for different
values of k. The process was first run for within-project mode.
That is, the recommendation list T (s) is collected only from
the previous changes of the project under processing. Then,
we ran it in hybrid mode, where the recommendation list T (s)
is also collected from the changes of all other projects. In
addition to running for general changes, we also performed
the same procedure for fixing changes.

Figure 8 shows the pseudo-code of the algorithm for rec-
ommending the target tree. Given a source tree s, it looks for
all existing changes (s, r) (line 3). The score of a target r
is computed as the ratio between the number of occurrences
of change from s to r and the number of occurrences of all
changes having s as the source tree (lines 16-18). This score
means the confidence of choosing r as the target of source s
among all other seen targets. We use 1 as the smoothing factor

for the cases where the numbers of occurrences are too small.
For better results, the algorithm considers the surrounding code
of s and r when ranking candidate targets. The idea is that if
the enclosing fragment of r is also the target of an enclosing
fragment of s with high confidence, r might have a better
chance to be the right target. Thus, it also considers the scores
among their ancestors. The recommendation score for r is
defined as the maximum score among the score between s
and r and the scores between any pair of their ancestors. This
score is used to rank the candidate targets in the list. Note that
the counting of Ns and Ns,r in function ComputeScore can be
adjusted to fit with the settings. In the within-project setting,
only the occurrences seen in the same project and before the
revision of the change (s, t) are counted. In the hybrid setting,
in addition to the occurrences as in the within-project setting,
all the ones seen in other projects are also counted.

B. Recommendation Result in Within-project Setting

Figure 9 shows the accuracy of recommending changes and
fixes in the within-project setting. We executed the recommen-
dation tool for 100 largest projects with different values of k
(the number of recommendations): 1, 2, 3, 4, 5, 10, 15, and
20. The accuracy for each k is shown as a box plot. As seen,
the top-1 accuracy is around 10% to 30%, with the median
value of around 20%. At k = 3, the accuracy can be up to 40%
(and the median is around 25%). After that, accuracy is stable,
i.e. does not improve much with more recommendations. The
accuracy for recommending fixing changes is lower than that
for general changes. The median accuracy is around 10%, even
though with more recommendations. Given the lower within-
project repetitiveness of fixing changes, this result is expected.

C. Recommendation Result with Hybrid Approach

Hybrid approach combines both within- and cross-project
repeated changes. As seen in Figure 9, for general changes,
the median top-1 accuracy is now around 30%. At k = 3, the
accuracy can be up to 55% (and the median is around 35%).
The median accuracy for fixing changes also increases to 25%.
This result shows that fix recommendation tools could benefit
much from cross-project fix repetitiveness.
Threats to validity. Although, our dataset contains a large
number of projects, all of them are developed on Java. Thus,
the observations on the repetitiveness of changes over change
size and type might not be generalizable for projects developed
in other languages or paradigms. In addition, all subjects are
open-source software, thus, their repetitiveness characteristics,
especially in the cross-project setting, might not be the same
for commercial software.

Another threat is on the accuracy of recommended changes
and fixes. We currently compare the recommended changes/-
fixes and actual ones by their trees after normalization for
literals and local variables. In other words, that accuracy result
is for template recommendation, rather than that of concrete
variable names and literal values. However, we expect that in
the concrete application of change/fix recommendation, a tool
must concretize the literal values and local variables’ names.

1 2 3 4 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Within−project Recommendation of Changes

1 2 3 4 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Within−project Recommendation of Bug Fixes

1 2 3 4 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Hybrid Recommendation of Changes

1 2 3 4 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Hybrid Recommendation of Bug Fixes

Fig. 9. Accuracy of changes and fixes recommendation

VI. RELATED WORK

Our study is related to the large-scale study by Gabel and
Su [8] on the uniqueness of source code on more than 420 mil-
lion LOCs in 6,000 software projects. They consider a source
file as a sequence of syntactical tokens with the abstraction on
variables’ names. They reported syntactic redundancy at levels
of granularity from 6-40 tokens. At the level of granularity
with 6 tokens, 50-100% of each project is redundant. Later, in
a study about 20 projects, Hindle et al. [12] have used n-gram
model to show that source code has high repetitiveness, and
n-gram model has good predictability and could be useful in
code suggestion. Another large-scale study on code reuse at the
file level was from Mockus [24], [25] on 13.2 millions source
files in continually-growing 38.7 thousand unique projects.
They reported that more than 50% of the files were used
in multiple projects. Jiang and Su [14] locate functionally
equivalent code fragments based on testing. The method could
be used to study source code reuse at the functional level.

There are advanced approaches in automatically generat-
ing/synthesizing the program fixes based on the previously
seen fixes in the projects’ histories [17]. Weimer et al. [11]
proposed GenProg, a patch generation method that is based
on genetic programming. Kim et al. [17] introduced PAR,
an automatic pattern-based program repair method, that learns
common patterns from prior human-written patches. Our study
provides empirical evidences for such automatic patch gener-
ation approaches. Our prediction model could serve as the
baseline to enhance those approaches. Our prior study in
FixWizard [29] and a study by Kim et al. [19] have confirmed
the recurring nature of fixes. However, they were conducted
in a much smaller scale with less than ten projects.

There are a large body of research and tools on clone
detection, which is concerned with the detection of copy-
and-paste fragments of code [4], [30]. Generally, they can
be classified based on their code representations. The typical
categories are text-based [6], [22], token-based [2], [15], [21],
[23], tree-based [3], [13], [7], and graph-based [20]. Most
clone detection tools focus on individual projects, rather than
across projects. There have been several studies on software
changes [32], non-essential changes [16], change-based bug
prediction [31], [9], code clone changes [18], cloning across
projects [1], patch identification [33], threats when using
version histories to study software evolution [26], etc. Giger
et al. [10] proposed an approach to predict type of changes
such as condition changes, interface modifications, inserts
or deletions of methods and attributes, or other kinds of
statement changes. They use the types and code churn for bug
prediction [9]. Our prediction study does not have different
types of changes, but focuses more exact fine-grained changes.

VII. CONCLUSIONS

In this paper, we present a study of repetitiveness of code
changes in software evolution. Repetitiveness is defined as
the ratio of repeated changes over total changes. We model
a change as a pair of old and new AST sub-trees within
a method. First, we found that repetitiveness of changes
could be very high at small sizes and decreases exponentially
as size increases. Second, repetitiveness is higher and more
stable in cross-project setting than in within-project one.
Third, fixing changes repeat similarly to general changes.
Importantly, learning code changes and recommending them
in software evolution is beneficial with accuracy for top-1
recommendation of over 30% and top-3 of nearly 35%.

REFERENCES

[1] R. Al-Ekram, C. Kapser, R. C. Holt, and M. W. Godfrey. Cloning
by accident: an empirical study of source code cloning across software
systems. In ISESE, pages 376–385, 2005.

[2] B. S. Baker. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM J. Comput., 26(5):1343–
1362, 1997.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In ICSM ’98: Proceedings of
the International Conference on Software Maintenance, page 368. IEEE
Computer Society, 1998.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Compari-
son and evaluation of clone detection tools. IEEE TSE, 33(9):577–591,
2007.

[5] B. Dagenais and M. P. Robillard. Recommending adaptive changes for
framework evolution. In ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, pages 481–490. ACM, 2008.

[6] S. Ducasse, M. Rieger, and S. Demeyer. A language independent
approach for detecting duplicated code. In Proceedings of the IEEE
International Conference on Software Maintenance, ICSM ’99. IEEE
CS, 1999.

[7] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans.
Softw. Eng., 33(11):725–743, Nov. 2007.

[8] M. Gabel and Z. Su. A study of the uniqueness of source code. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, FSE ’10, pages 147–156. ACM,
2010.

[9] E. Giger, M. Pinzger, and H. Gall. Comparing fine-grained source code
changes and code churn for bug prediction. In 8th working conference
on Mining software repositories, pages 83–92. ACM, 2011.

[10] E. Giger, M. Pinzger, and H. C. Gall. Can we predict types of code
changes? an empirical analysis. In MSR, pages 217–226. IEEE CS,
2012.

[11] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. IEEE Trans. Software
Eng., 38(1):54–72, 2012.

[12] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the
naturalness of software. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 837–847. IEEE
Press, 2012.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proceedings of the 29th
international conference on Software Engineering, ICSE ’07, pages 96–
105. IEEE CS, 2007.

[14] L. Jiang and Z. Su. Automatic mining of functionally equivalent
code fragments via random testing. In Proceedings of the eighteenth
international symposium on Software testing and analysis, ISSTA ’09,
pages 81–92. ACM, 2009.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Trans. Softw. Eng., 28(7):654–670, July 2002.

[16] D. Kawrykow and M. P. Robillard. Non-essential changes in version
histories. In ICSE, pages 351–360, 2011.

[17] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, ICSE 2013. IEEE
Press (To appear), 2013.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study
of code clone genealogies. SIGSOFT Softw. Eng. Notes, 30(5):187–196,
2005.

[19] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes.
In Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT ’06/FSE-14, pages 35–
45. ACM, 2006.

[20] R. Komondoor and S. Horwitz. Using slicing to identify duplication
in source code. In SAS ’01: Proceedings of the 8th International
Symposium on Static Analysis, pages 40–56. Springer-Verlag, 2001.

[21] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Trans. Softw. Eng.,
32(3):176–192, Mar. 2006.

[22] A. Marcus and J. I. Maletic. Identification of high-level concept clones in
source code. In Proceedings of the 16th IEEE international conference
on Automated software engineering, ASE ’01. IEEE CS, 2001.

[23] T. Mende, R. Koschke, and F. Beckwermert. An evaluation of code
similarity identification for the grow-and-prune model. J. Softw. Maint.
Evol., 21(2):143–169, Mar. 2009.

[24] A. Mockus. Large-scale code reuse in open source software. In
Proceedings of the First International Workshop on Emerging Trends
in FLOSS Research and Development, FLOSS ’07. IEEE CS, 2007.

[25] A. Mockus. Amassing and indexing a large sample of version control
systems: Towards the census of public source code history. In Proceed-
ings of the 2009 6th IEEE International Working Conference on Mining
Software Repositories, MSR ’09, pages 11–20. IEEE CS, 2009.

[26] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is
it dangerous to use version control histories to study source code
evolution? In ECOOP, pages 79–103, 2012.

[27] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Clone management for evolving software. IEEE Trans. Softw.
Eng., 38(5):1008–1026, Sept. 2012.

[28] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen. A graph-based approach to api usage adaptation.
In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, pages
302–321. ACM, 2010.

[29] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Recurring bug fixes in object-oriented programs. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 315–324. ACM, 2010.

[30] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Sci.
Comput. Program., 74(7):470–495, May 2009.

[31] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim. Reducing features to
improve code change-based bug prediction. IEEE Trans. Software Eng.,
39(4):552–569, 2013.

[32] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software
engineers understand code changes?: an exploratory study in industry.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pages 51:1–51:11.
ACM, 2012.

[33] Y. Tian, J. L. Lawall, and D. Lo. Identifying linux bug fixing patches.
In ICSE, pages 386–396, 2012.

[34] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE
’10, pages 195–204. ACM, 2010.

[35] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
eclipse. In Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, PROMISE ’07. IEEE CS, 2007.

