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Abstract 
 
        Aspect-oriented (AO) design and programming 
methods promise to improve the modularity properties 
of software-intensive systems. However, AO is also 
seen as violating fundamental design principles; and 
we lack a theory to guide its appropriate use. Our 
work rests on the idea that successful AO techniques 
have deep roots in implicit invocation (II) mechanisms. 
Elaborating this connection provides for an expedited 
development of both a theoretical understanding and 
an effective practice of AO design techniques. In this 
paper we show, in particular, that this bridge can be 
exploited to enable model checking of AO systems 
using existing techniques for II systems.  
 

1. Introduction 
Aspect-oriented programming (AOP) [14] has the 

potential to improve software design, but it also 
challenges prevailing design ideas. Aspects can modify 
the behaviors of other modules, which conflicts with 
ideas of abstraction and the integrity of encapsulated 
data. Aspects also come to depend on implementation 
details of other modules, which conflicts with 
traditional ideas of abstraction and information hiding.  

One response to these tensions is to restrict the 
power of aspect mechanisms. Proposals of this form 
encounter stiff resistance in the AOP community as 
“throwing out the baby with the bath water.” If we are 
to retain the power of AO, however, it is clear that we 
need a new theory of design to guide us in the 
appropriate use and development of its mechanisms.  

The idea—not new—on which this paper is based is 
that AO rests on implicit invocation [12][17][19]. The 
difference is that events are represented explicitly in II 
systems, but are provided implicitly by the semantics of 
AO language designs. In other words, II is explicit 
implicit invocation; AO is implicit implicit invocation. 
A thesis of our research program is that we can exploit 
this deep connection between AO and II as a bridge to 
transport knowledge and theory developed in the II 
realm to the AO realm.  

In past work [22], we interpreted AO join points as 
events, and showed that limitations of current AO event 
models prevent their use to support design techniques 
that ease the design and evolution of integrated systems 
[23]. Next, we showed that extending language models 
in light of this analysis solves the problem [18]. This 
paper shows that a formal reduction from AO to II 
enables model checking techniques for II [4][11] to be 
used to check properties of AO systems automatically. 
Studying the relationship between II and AO can help 
resolve thorny theoretical and practical issues for AO. 

In the rest of the paper, we start by presenting a 
simple formal reduction from AO space to II space. We 
then support the claim that the reduction is useful by 
showing that it enables existing model checking 
techniques for II to be used to check AO programs.  

2. Reduction from AOP to II 
In this section, we make the connection from AOP 

to II concrete as a simple formal reduction.  

2.1 Aspect Oriented Programming Space 
Given a program, we denote its set of objects by O: 

}program in theobject an is|{ ooO =  
A join point is a point in program execution 

exposed by the language as an advisable event. The 
join points exposed by AspectJ-like languages include 
method call and execution, field get and set operations, 
exception, and object initialization, etc. We denote the 
join points of the program by J: 
    }program in thepoint join  a is|{ jjJ =  

P denotes the set of all pointcuts in a program, 
where a pointcut is a predicate on the join points: 
    program} in thepointcut  a is|{ ppP =  

The selection by a pointcut P of a join point set J is 
denoted as a binary relation between P and J named 
PJ: 
    JPPJ ×⊆  

An advice body is a special method meant to run 
when the program execution encounters selected join 
points. We denote the set of all advice constructs by A: 
    program} in theconstruct  advicean  is|{ aaA =  



The execution of advice can be ordered in one of 
three ways with respect to a join point: before, after, or 
around. For simplicity, we do not model around in this 
paper. The set T denotes the available orders:  
    },{ beforeafterT =  

A key construct in AO is the association of an 
advice body with a pointcut. Such an expression means 
that the advice should run at each selected join point, 
with the specified ordering. The ternary relation ATP 
represents these relations in the given program:  
    PTAATP ××⊆  

Finally, and most importantly, the pointcut is 
resolved to a set of join points (events) and the advice 
is registered with each such event. The ternary relation 
ATJ represents this composition of ATP and PJ.  
    JTAPJATPATJ ××⊆= �  

2.2 Implicit Invocation Space  
The functionality of an II system can be viewed as 

an event-handler binding relationship [12][23], which 
can be modeled as follows: 
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}system in thehandler event an  is|{
}system in theevent an  is|{

}system in thecomponent  a is|{

 

HE models the event-handler binding as a binary 
relation between the set of events E and the set of event 
handlers H. 

2.3 Reduction Rules 
To reduce constructs in the AOP space to 

constructs in the II space, we established a set of 
reduction rules from advising in aspect space to event-
handler binding in II space. First, a function w maps 
objects in AO space to components in II space. 

COw →:  
The role of an advice, with respect to the advised 

join point is the same as the event handler with respect 
to the captured event. Here x represents a one-to-one 
relation from the set of advice bodies (A) to the set of 
handler (H).  
    HAx →:  

Next, the partial function y maps the cross product 
of join points (J) and orderings in AO space to events 
in II space. Before and after a join point are two 
distinct events. The mapping y is partial because not all 
join points have meaningful before or after events. In 
AspectJ, for example, before object-initialization or 
after the execution of an exception handler are not 
defined.  
    EJTy →×:  

The critical reduction rule is z, a composition of the 
reduction rules x and y. It produces an event-handler 
binding corresponding to an advice invocation.  To 
reduce the state space of the II model, we prune the 
events that do not have a mapping to any handler.  
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In addition, the reduction process adds a dispatcher 
and a dispatch policy module to the reduced II system. 
The dispatcher is responsible for event storage, 
binding, delivery, and interacting with the policy 
module. The policy module implements the event 
delivery policy, which could be first-come-first-serve 
or some other policy. When the dispatcher receives an 
event, it inquires of the policy module to decide the 
action to take. We assume first-come-first-serve. 

3. Model Checking AO Programs 
We now show that the bridge we’ve constructed 

between AOP and II can improve our ability to use AO 
techniques. In particular, this bridge allows us to model 
check AO programs (AOP’s) by reducing them to II 
systems and applying previous techniques [4][8][11].  

Model checkers generally verify the correctness of 
assertions or temporal logic expressions. To model 
check AOP’s, we first translate the AOP’s to equivalent 
II programs. We also reduce properties of AOP’s to 
assertions over components in II space: 
    PPu ′→:  

The reduction rule u maps p, a property assertion in 
aspect property space P, to p’, a property assertion in 
implicit invocation property space P’.  

The verification condition is that the property p is 
true if and only if p’ is true. 
    ))(()(, puVpVPp ⇔∈∀  

This is true since our work focuses on the impact of 
an aspect module on other modules. Assertions about 
the impact of aspects can be mapped to assertions 
about the semantics of events over components. The 
existing model checking approaches are then applied to 
the II program and the reduced property. On a yes 
output, no result reduction is required. On a no output, 
a counter-example is produced in the II space that 
could, in principle, be mapped back to the AOP space.  

In practice, we translate an aspect-oriented program 
reduced to an II system into a PROMELA [21] 
program, which is the input language for SPIN [21] 
model checker. For the base code, which is equivalent 
to an OO program, we adapt the translation approach 
used by Java Pathfinder (JPF) [13]. For the aspect 
code, we perform our formal reduction from AOP to II.  
Rest of the section explains the process.  



3.1 Classes and Aspects 
In PROMELA, one cannot directly access the data 

variables of a process from outside the process. Hence, 
we choose to separate the set of data variables and the 
set of methods. Like JPF, we encapsulate the data of a 
class using a record. In addition, we pre-define a data 
area for every class, i.e., an array of records. For each 
new creation of an object, a new record is allocated. An 
index variable points to the next free record. We treat 
each instance of an aspect as an object of a class. 

3.2 Methods and Advice 
PROMELA does not natively support function 

definitions and calls. To implement function calls we 
declare a separate active process (initiated from the 
beginning) for each method, which acts as a server: 
responding to requests and receiving parameters from 
the user processes via a call channel and returning 
results to the user process via a return channel.  

As for parameter passing, arrays cannot be 
parameters of a proctype. Although passing arrays via 
message channels is feasible, it is still unappealing to 
refer to an object by itself, since PROMELA does not 
natively support call-by-reference or call-by-value on 
complex data structures. Therefore, we prefer to use an 
index value to refer to an object.  

Advice bodies are treated as methods, except that 
the parameters of the former are often implicit.  

3.3 Events and Binding 
An implicit invocation system is driven by events. 

We represent events as messages. Whenever the base 
program raise an event, it sends a message containing 
the event information: the join point, the source of the 
message, namely, the object that raises the event and 
the reflective information available at the join point as 
event parameters to be used in event handling. 

We model the message dispatcher as a separate 
active process in PROMELA. It monitors the event 
channel and dispatches messages to specified event 
handlers (i.e., advice). The message dispatcher is also 
responsible for the context matching of dynamic join 
points like cflow and cflowbelow. 

3.4 Checking properties 
To verify properties, we use a separate monitoring 

process. This process checks every assertion at stable 
points like timeout, a system-defined condition in 
PROMELA, which has the value true in all global 
system states where no statement is executable in any 
active process, and false in all other states.  

3.5 Other issues 
Scalability is an important issue. On one side, our 

translation from aspect code to PROMELA is a pre-
compilation process and can perhaps be automated to 
an extent. On the other side, the scalability of the 
model checking approach depends on the scalability of 
SPIN and PROMELA. In particular, there are limits on 
the maximum number of objects and the maximum 
number of active processes. Some SPIN extensions 
[24]  address these issues. 

Specifying properties of aspect-oriented programs 
is a challenge. A property about a program has two 
parts: first, a specification of the property, and, second, 
when it must hold. Currently PROMELA does not 
provide a way to express points where assertions hold. 
In the future, we will explore better ways to specify 
properties.  

4. Related Work 
Our work provides the necessary bridge to apply  

Dingel et al’s. [8], Garlan et al’s. [11], and Bradbury et 
al’s [4]  work on II to AOP. Filman and Havelund [10] 
and Walker and Murphy [25] elicit roots of AOP in II. 
Our contribution is in exploring ways to formalize and 
then exploit the connection in order to develop theory, 
methods, and tools to improve our abilities to use AOP.  

There are other approaches to directly or indirectly 
reason about AOP. Blair and Monga [3], for example, 
view each pointcut as a slicing criterion. They then 
propose to check slices using Bandera [6], but the 
expressiveness of aspects is difficult to capture by any 
slicing technique, and the work remains at the 
conceptual stage. Clifton et al. [5] on the other hand 
suggest classifying aspects and making the aspect 
invocation explicit compromising the obliviousness [8]. 
Our approach on the other hand, does not impose any 
restrictions on the language model of AOP; nor are we 
concerned with component properties, here, but only 
with system properties. Devereux [7] expresses 
program properties as assertions in alternating time 
logic; however, the lack of tool support for automated 
reasoning in alternating-time logic makes the reduction 
less attractive. Sihman and Katz [20] explore model 
checking of aspects. They are concerned with verifying 
that aspect code does not compromise base code 
satisfaction of its specification, and with verifying 
aspects independently of specific base code. Model 
checking of aspect code per se is not a new idea. Our 
contribution is to show that developed techniques for II 
can be adapted directly for analysis of AO programs. 

Aldrich proposes type theory to ease reasoning 
about programs in restricted AO languages [1]. He 
presents an aspect language called TinyAspect based 



on module sealing and explicit declaration of exported 
join points.  The idea is to enforce abstraction by 
prohibiting aspects from exploiting implementation 
details such as calls from within components to their 
own methods (as in our running example). The 
approach rests on a problematical hiding of certain join 
points, leaving visible only those that are likely to be 
adequate as proxies for semantic events of interest.  

5. Conclusion and Future Work 
We have shown that the bridge between AO and II 

promises to help us better understand and use AO. In 
particular, it allows us to import concepts, methods, 
tools, and techniques from the II domain for use in AO. 
In this paper, we showed that this connection enables 
the direct application of model checking methods for II 
to AO systems. 

In future work, we anticipate developing a critique 
of the current AO event model and its implications for 
the design of reliably evolvable systems.  
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