
Understanding Aspects via Implicit Invocation

Jia Xu Hridesh Rajan Kevin Sullivan
Department of Computer Science, University of Virginia

{jx9n, hr2j, sullivan}@cs.virginia.edu

Abstract

 Aspect-oriented (AO) design and programming
methods promise to improve the modularity properties
of software-intensive systems. However, AO is also
seen as violating fundamental design principles; and
we lack a theory to guide its appropriate use. Our
work rests on the idea that successful AO techniques
have deep roots in implicit invocation (II) mechanisms.
Elaborating this connection provides for an expedited
development of both a theoretical understanding and
an effective practice of AO design techniques. In this
paper we show, in particular, that this bridge can be
exploited to enable model checking of AO systems
using existing techniques for II systems.

1. Introduction
Aspect-oriented programming (AOP) [14] has the

potential to improve software design, but it also
challenges prevailing design ideas. Aspects can modify
the behaviors of other modules, which conflicts with
ideas of abstraction and the integrity of encapsulated
data. Aspects also come to depend on implementation
details of other modules, which conflicts with
traditional ideas of abstraction and information hiding.

One response to these tensions is to restrict the
power of aspect mechanisms. Proposals of this form
encounter stiff resistance in the AOP community as
“throwing out the baby with the bath water.” If we are
to retain the power of AO, however, it is clear that we
need a new theory of design to guide us in the
appropriate use and development of its mechanisms.

The idea—not new—on which this paper is based is
that AO rests on implicit invocation [12][17][19]. The
difference is that events are represented explicitly in II
systems, but are provided implicitly by the semantics of
AO language designs. In other words, II is explicit
implicit invocation; AO is implicit implicit invocation.
A thesis of our research program is that we can exploit
this deep connection between AO and II as a bridge to
transport knowledge and theory developed in the II
realm to the AO realm.

In past work [22], we interpreted AO join points as
events, and showed that limitations of current AO event
models prevent their use to support design techniques
that ease the design and evolution of integrated systems
[23]. Next, we showed that extending language models
in light of this analysis solves the problem [18]. This
paper shows that a formal reduction from AO to II
enables model checking techniques for II [4][11] to be
used to check properties of AO systems automatically.
Studying the relationship between II and AO can help
resolve thorny theoretical and practical issues for AO.

In the rest of the paper, we start by presenting a
simple formal reduction from AO space to II space. We
then support the claim that the reduction is useful by
showing that it enables existing model checking
techniques for II to be used to check AO programs.

2. Reduction from AOP to II
In this section, we make the connection from AOP

to II concrete as a simple formal reduction.

2.1 Aspect Oriented Programming Space
Given a program, we denote its set of objects by O:

}program in theobject an is|{ ooO =
A join point is a point in program execution

exposed by the language as an advisable event. The
join points exposed by AspectJ-like languages include
method call and execution, field get and set operations,
exception, and object initialization, etc. We denote the
join points of the program by J:
 }program in thepoint join a is|{ jjJ =

P denotes the set of all pointcuts in a program,
where a pointcut is a predicate on the join points:
 program} in thepointcut a is|{ ppP =

The selection by a pointcut P of a join point set J is
denoted as a binary relation between P and J named
PJ:
 JPPJ ×⊆

An advice body is a special method meant to run
when the program execution encounters selected join
points. We denote the set of all advice constructs by A:
 program} in theconstruct advicean is|{ aaA =

The execution of advice can be ordered in one of
three ways with respect to a join point: before, after, or
around. For simplicity, we do not model around in this
paper. The set T denotes the available orders:
 },{ beforeafterT =

A key construct in AO is the association of an
advice body with a pointcut. Such an expression means
that the advice should run at each selected join point,
with the specified ordering. The ternary relation ATP
represents these relations in the given program:
 PTAATP ××⊆

Finally, and most importantly, the pointcut is
resolved to a set of join points (events) and the advice
is registered with each such event. The ternary relation
ATJ represents this composition of ATP and PJ.
 JTAPJATPATJ ××⊆= �

2.2 Implicit Invocation Space
The functionality of an II system can be viewed as

an event-handler binding relationship [12][23], which
can be modeled as follows:

EHHE

hhH
eeE

ccC

×⊆
=
=
=

}system in thehandler event an is|{
}system in theevent an is|{

}system in thecomponent a is|{

HE models the event-handler binding as a binary
relation between the set of events E and the set of event
handlers H.

2.3 Reduction Rules
To reduce constructs in the AOP space to

constructs in the II space, we established a set of
reduction rules from advising in aspect space to event-
handler binding in II space. First, a function w maps
objects in AO space to components in II space.

COw →:
The role of an advice, with respect to the advised

join point is the same as the event handler with respect
to the captured event. Here x represents a one-to-one
relation from the set of advice bodies (A) to the set of
handler (H).
 HAx →:

Next, the partial function y maps the cross product
of join points (J) and orderings in AO space to events
in II space. Before and after a join point are two
distinct events. The mapping y is partial because not all
join points have meaningful before or after events. In
AspectJ, for example, before object-initialization or
after the execution of an exception handler are not
defined.
 EJTy →×:

The critical reduction rule is z, a composition of the
reduction rules x and y. It produces an event-handler
binding corresponding to an advice invocation. To
reduce the state space of the II model, we prune the
events that do not have a mapping to any handler.

HEjtyaxjtazATJjta

HEATJz

>∈=<>∈<∀
→

),(),(),,(,,,
:

In addition, the reduction process adds a dispatcher
and a dispatch policy module to the reduced II system.
The dispatcher is responsible for event storage,
binding, delivery, and interacting with the policy
module. The policy module implements the event
delivery policy, which could be first-come-first-serve
or some other policy. When the dispatcher receives an
event, it inquires of the policy module to decide the
action to take. We assume first-come-first-serve.

3. Model Checking AO Programs
We now show that the bridge we’ve constructed

between AOP and II can improve our ability to use AO
techniques. In particular, this bridge allows us to model
check AO programs (AOP’s) by reducing them to II
systems and applying previous techniques [4][8][11].

Model checkers generally verify the correctness of
assertions or temporal logic expressions. To model
check AOP’s, we first translate the AOP’s to equivalent
II programs. We also reduce properties of AOP’s to
assertions over components in II space:
 PPu ′→:

The reduction rule u maps p, a property assertion in
aspect property space P, to p’, a property assertion in
implicit invocation property space P’.

The verification condition is that the property p is
true if and only if p’ is true.
))(()(, puVpVPp ⇔∈∀

This is true since our work focuses on the impact of
an aspect module on other modules. Assertions about
the impact of aspects can be mapped to assertions
about the semantics of events over components. The
existing model checking approaches are then applied to
the II program and the reduced property. On a yes
output, no result reduction is required. On a no output,
a counter-example is produced in the II space that
could, in principle, be mapped back to the AOP space.

In practice, we translate an aspect-oriented program
reduced to an II system into a PROMELA [21]
program, which is the input language for SPIN [21]
model checker. For the base code, which is equivalent
to an OO program, we adapt the translation approach
used by Java Pathfinder (JPF) [13]. For the aspect
code, we perform our formal reduction from AOP to II.
Rest of the section explains the process.

3.1 Classes and Aspects
In PROMELA, one cannot directly access the data

variables of a process from outside the process. Hence,
we choose to separate the set of data variables and the
set of methods. Like JPF, we encapsulate the data of a
class using a record. In addition, we pre-define a data
area for every class, i.e., an array of records. For each
new creation of an object, a new record is allocated. An
index variable points to the next free record. We treat
each instance of an aspect as an object of a class.

3.2 Methods and Advice
PROMELA does not natively support function

definitions and calls. To implement function calls we
declare a separate active process (initiated from the
beginning) for each method, which acts as a server:
responding to requests and receiving parameters from
the user processes via a call channel and returning
results to the user process via a return channel.

As for parameter passing, arrays cannot be
parameters of a proctype. Although passing arrays via
message channels is feasible, it is still unappealing to
refer to an object by itself, since PROMELA does not
natively support call-by-reference or call-by-value on
complex data structures. Therefore, we prefer to use an
index value to refer to an object.

Advice bodies are treated as methods, except that
the parameters of the former are often implicit.

3.3 Events and Binding
An implicit invocation system is driven by events.

We represent events as messages. Whenever the base
program raise an event, it sends a message containing
the event information: the join point, the source of the
message, namely, the object that raises the event and
the reflective information available at the join point as
event parameters to be used in event handling.

We model the message dispatcher as a separate
active process in PROMELA. It monitors the event
channel and dispatches messages to specified event
handlers (i.e., advice). The message dispatcher is also
responsible for the context matching of dynamic join
points like cflow and cflowbelow.

3.4 Checking properties
To verify properties, we use a separate monitoring

process. This process checks every assertion at stable
points like timeout, a system-defined condition in
PROMELA, which has the value true in all global
system states where no statement is executable in any
active process, and false in all other states.

3.5 Other issues
Scalability is an important issue. On one side, our

translation from aspect code to PROMELA is a pre-
compilation process and can perhaps be automated to
an extent. On the other side, the scalability of the
model checking approach depends on the scalability of
SPIN and PROMELA. In particular, there are limits on
the maximum number of objects and the maximum
number of active processes. Some SPIN extensions
[24] address these issues.

Specifying properties of aspect-oriented programs
is a challenge. A property about a program has two
parts: first, a specification of the property, and, second,
when it must hold. Currently PROMELA does not
provide a way to express points where assertions hold.
In the future, we will explore better ways to specify
properties.

4. Related Work
Our work provides the necessary bridge to apply

Dingel et al’s. [8], Garlan et al’s. [11], and Bradbury et
al’s [4] work on II to AOP. Filman and Havelund [10]
and Walker and Murphy [25] elicit roots of AOP in II.
Our contribution is in exploring ways to formalize and
then exploit the connection in order to develop theory,
methods, and tools to improve our abilities to use AOP.

There are other approaches to directly or indirectly
reason about AOP. Blair and Monga [3], for example,
view each pointcut as a slicing criterion. They then
propose to check slices using Bandera [6], but the
expressiveness of aspects is difficult to capture by any
slicing technique, and the work remains at the
conceptual stage. Clifton et al. [5] on the other hand
suggest classifying aspects and making the aspect
invocation explicit compromising the obliviousness [8].
Our approach on the other hand, does not impose any
restrictions on the language model of AOP; nor are we
concerned with component properties, here, but only
with system properties. Devereux [7] expresses
program properties as assertions in alternating time
logic; however, the lack of tool support for automated
reasoning in alternating-time logic makes the reduction
less attractive. Sihman and Katz [20] explore model
checking of aspects. They are concerned with verifying
that aspect code does not compromise base code
satisfaction of its specification, and with verifying
aspects independently of specific base code. Model
checking of aspect code per se is not a new idea. Our
contribution is to show that developed techniques for II
can be adapted directly for analysis of AO programs.

Aldrich proposes type theory to ease reasoning
about programs in restricted AO languages [1]. He
presents an aspect language called TinyAspect based

on module sealing and explicit declaration of exported
join points. The idea is to enforce abstraction by
prohibiting aspects from exploiting implementation
details such as calls from within components to their
own methods (as in our running example). The
approach rests on a problematical hiding of certain join
points, leaving visible only those that are likely to be
adequate as proxies for semantic events of interest.

5. Conclusion and Future Work
We have shown that the bridge between AO and II

promises to help us better understand and use AO. In
particular, it allows us to import concepts, methods,
tools, and techniques from the II domain for use in AO.
In this paper, we showed that this connection enables
the direct application of model checking methods for II
to AO systems.

In future work, we anticipate developing a critique
of the current AO event model and its implications for
the design of reliably evolvable systems.

6. Acknowledgements
This work was supported in part by the National

Science Foundation under grant ITR-0086003.

7. References
[1] Aldrich, J., “Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming”, FOAL
2004, Lancaster, UK, March 2004.

[2] AspectJ: http://www.eclipse.org/aspectj.

[3] Blair, L., Monga, M. “Reasoning on AspectJ
Programmes”, GI-AOSDG 2003 Essen, Germany.

[4] Bradbury, J. S., Dingel, J.,"Evaluating and Improving
the Automatic Analysis of Implicit Invocation Systems",
ESEC/FSE 2003, Helsinki, Finland, Sept. 2003.

[5] Clifton, C., and Leavens, G. T., “Observers and
Assistants: A Proposal for Modular Aspect-Oriented
Reasoning.”, Technical Report TR#02-04, Department
of Computer Science, Iowa State University, Mar 2002.

[6] Corbett, J.C. et al., “Bandera: Extracting Finite State
Models from Java Source Code”, Proc ICSE 2000.

[7] Devereux, B., “Compositional Reasoning About
Aspects Using Alternating-time Logic", FOAL 2003.

[8] Dingel, J., Garlan, D., Jha, S., Notkin, D., "Reasoning
about implicit invocation", FSE-6, November 1998.

[9] Filman R., and Friedman, D., “Aspect-oriented
programming is quantification and obliviousness”, In

Proc. Workshop on Advanced Separation of Concerns,
OOPSLA 2000.

[10] Filman, R.E., Havelund, K.. "Realizing Aspects by
Transforming for Events." ASE Sept. 2002.

[11] Garlan, D., Khersonsky, S., and Kim, J. S., "Model
Checking Publish-Subscribe Systems", SPIN 03,
Portland, Oregon, May 2003.

[12] Garlan, D., and Notkin, D., “Formalizing Design
Spaces: Implicit Invocation Mechanisms”. VDM '91:
Formal Software Development Methods, Oct. 1991.

[13] Havelund, K., and Pressburger, T., “Model checking
JAVA programs using JAVA pathfinder”, International
Journal on Software Tools for Technology Transfer,
2(4):366--381, 2000.

[14] Kiczales, G. et al., “Aspect-oriented programming,”
ECOOP 1997, June 1997.

[15] McMillan, K, “ Cadence SMV”, http://www-
cad.eecs.berkeley.edu/~kenmcmil/smv/

[16] C#: http://msdn.microsoft.com/net/ecma.

[17] Notkin, D. et al., “Adding Implicit Invocation to
Languages: Three Aproaches,” Proc. JSSST Symp.
Object Technologies for Advanced Software, Springer-
Verlag LNCS 742, November 1993.

[18] Rajan, H. and Sullivan, K., “Eos: Instance-Level
Aspects for Integrated System Design”, ESEC/FSE 03,
Helsinki, Finland, Sept 2003.

[19] Reiss, S.P., “Connecting Tools Using Message Passing
in the Field Environment,” IEEE Software, Jul. 1990.

[20] Sihman, M. and Katz, S.. Model Checking Applications
of Aspects and Superimpositions, FOAL 2003.

[21] SPIN, http://spinroot.com/spin/whatispin.html.

[22] Sullivan, K., L. Gu, and Y. Cai, “Non-modularity in
aspect-oriented languages: integration as a cross-cutting
concern for AspectJ,” Proceedings of AOSD 2002.

[23] Sullivan, K. and Notkin, D., “Reconciling environment
integration and software evolution,” ACM Transactions
on Software Engineering and Methodology 1, 3, July
1992, pp. 229–268.

[24] Visser, W. et al., , “Adding Active Objects to SPIN”,
Lecture Notes in Computer Science, Jul & Sept. 1999.

[25] Walker, R. J. and Murphy, G. C., “Joinpoints as ordered
events: towards applying implicit context to aspect-
orientation”, Workshop on Advanced Separation of
Concerns at the 23nd ICSE, 2001.

