
On Exceptions, Events and Observer Chains

Mehdi Bagherzadeh Hridesh Rajan Ali Darvish
Dept. of Computer Science, Iowa State University

Ames, IA, 50011, USA
{mbagherz,hridesh,ali2}@iastate.edu

ABSTRACT
Modular understanding of behaviors and flows of exceptions may
help in their better use and handling. Such reasoning tasks about
exceptions face unique challenges in event-based implicit invo-
cation (II) languages that allow subjects to implicitly invoke ob-
servers, and run the observers in a chain. In this work, we illustrate
these challenge in Ptolemy and propose Ptolemyχ that enables
modular reasoning about behaviors and flows of exceptions for
event announcement and handling. Ptolemyχ’s exception-aware
specification expressions and boundary exceptions limit the set of
(un)checked exceptions of subjects and observers of an event. Ex-
ceptional postconditions specify the behaviors of these exceptions.
Greybox specifications specify the flows of these exceptions among
the observers in the chain. Ptolemyχ’s type system and refinement
rules enforce these specifications and thus enable its modular rea-
soning. We evaluate the utility of Ptolemyχ’s exception flow rea-
soning by applying it to understand a set of aspect-oriented (AO)
bug patterns. We also present Ptolemyχ’s semantics including its
sound static semantics.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Exceptions

General Terms Languages, Theory

Keywords event, exceptional behavior, exception flow

1. INTRODUCTION
Exceptions are useful for structured separation of normal and er-

ror handling code. However, their improper use and handling could
put a system in undetermined risky states or even crash it [29]. Un-
derstanding exceptions, especially their behaviors and flows may
help with their better use and handling [28, 35]. Previous work,
such as JML [25], ESC/Java [12], the work of Jacobs et al. [16] an-
chored exceptions [39], Jex [33] and EJFlow [5] enable reasoning
about behaviors or flows of exceptions. However, they are tailored
for systems in which invocation relations among the modules are
explicit and known, i.e. explicit invocation (EI) [7]. With EI, in
languages such as Java, a module explicitly invokes another mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24-29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

ule with a method call E.m() in which both the static type of the
invoked module E and the name of the method m are known. EI
reasoning techniques use this knowledge to incorporate the behav-
iors and flows of the exceptions of the method m into its invoking
module [7]. Supertype abstraction enables reasoning independent
of the dynamic type of E. However, the invocation relations among
modules of a system are not limited to explicit invocations. This is
true in languages such as Java or C# when using events and dele-
gates or in languages such as AspectJ [21,22] or Ptolemy [31] when
a module invokes another module implicitly and without knowing
about it, i.e. implicit invocation (II) [15]. Ptolemy is an event-based
II extension of Java.

Modular reasoning about behaviors and flows of exceptions
faces unique challenges in II languages such as Ptolemy or As-
pectJ that allow a (subject) module to invoke other (observer)
modules without knowing about them and run them in a chain.
In Ptolemy, a subject announces an event and zero or more ob-
servers register for the event and handle it. The observers form
a chain based on their dynamic registration order and may in-
voke each other. The observers are not explicitly mentioned
in the subject and are invoked implicitly by an II mechanism,
upon announcement of the event. The following code snippet
in Ptolemy illustrates a subject module that announces an event
Ev causing its unknown observers to be invoked in a chain.

announce Ev(){}

To reason about this subject, especially behaviors and flows of
exceptions during announcement and handling of Ev, behaviors of
its observers when throwing the exceptions and flows of these ex-
ceptions in the chain of the observers should be understood. De-
pending on the order of the observers in the chain, an exception
thrown by one observer may be caught by another observer or
propagated down the chain. However, the observers, their orders
in the chain, and the behaviors and flows of their exceptions are not
known to the subject. Even if the such information were available
for individual observers, a naive use of EI reasoning techniques
may require all possible orders of execution of the observers to be
considered, i.e. n! for n observers. Such dependency of reasoning
on system configuration, i.e. individual observers, their order and
behaviors and flows of their exceptions, threatens its modularity
since any changes in the system configuration could invalidate any
previous reasoning. The main difference from Java’s Event Model
or the Observer pattern [24] is that observers form a chain based on
their dynamic registration order and may invoke each other.

Previous work on modular reasoning about Ptolemy-like II lan-
guages, such as translucid contracts [2], join point interfaces (JPI)
[36], crosscutting programming interfaces (XPI) and the work of
Khatchadourian et al. [20], provides the subject with the knowl-

edge about behaviors of its unknown observers via rely-guarantee-
like [7] techniques. The rely-guarantee allows the subject to rely
on the provided knowledge about its observers independent of the
system configuration [19]. However, the previous work is mostly
focused on normal behaviors of the observers and is less concerned
about their exceptions, and behaviors and flows of these exceptions.
Previous work on Join Point Interfaces (JPI) [3] provides the sub-
ject with the knowledge about the types of the exceptions of its
observers but not their behaviors or flows.

In summary, the following problems exist when understanding a
subject in Ptolemy, especially modular reasoning about behaviors
and flows of exceptions in announcement and handling of its event:

• problem (1): subject does not know about the exceptions that
its observers may throw;

• problem (2): subject does not know about the behaviors of
the exceptions of its observers;

• problem (3): subject does not know about the flows of the
exceptions among its observers in the chain of the observers.

We propose Ptolemyχ, as an exception-aware extension of
Ptolemy, to solve these problems. To address the problem (1) for
checked exceptions, similar to JPI, we limit the set of checked ex-
ceptions of a subject and its observers. These exceptions are re-
ferred to as boundary exceptions. To address the problem (1) for
unchecked exceptions we propose exception-aware specification
expressions to limit the set of unchecked exceptions of the subject
and its observers. For the problem (2) we use exceptional postcon-
ditions to specify the state of the subject and observers upon throw-
ing the exceptions. And finally to solve the problem (3), we use
greybox specifications to specify the flow of the exceptions among
the observers in their chain, by limiting their implementation struc-
tures. Ptolemyχ’s type system, refinement rules and runtime as-
sertion checks ensure that the subject and its observers satisfy these
specifications and thus enable modular reasoning about the behav-
iors and flows of the exceptions for announcement and handling
of the event, independent of system configuration, i.e. individual
observers and their execution order in their chain.

1.1 Contributions
In summary the contributions of this paper are the following:

• Enabling modular reasoning about behaviors and flows of ex-
ceptions for event announcement and handling in Ptolemyχ;

• Evaluating Ptolemyχ’s exception flow reasoning in under-
standing Coelho et al. ’s aspect-oriented bug patterns [6];

• Presenting Ptolemyχ’s sound static and dynamic semantics.

The rest of the paper continues as the following. Section 2 illus-
trates the problems (1)–(3) for modular reasoning about behaviors
and flows of exceptions in announcement and handling of events
in Ptolemy. Section 3 describes our proposed language design of
Ptolemyχ and how it solves the example modular reasoning prob-
lems of Section 2. Section 4 discusses Ptolemyχ’s sound type sys-
tem and its refinement rules that enable its modular reasoning. Sec-
tion 5 illustrates the usability of Ptolemyχ’s exception flow reason-
ing in understanding Coelho et al. ’s AO bug patterns [6]. This sec-
tion also discusses the overhead of applying Ptolemyχ to Ptolemy
programs. Section 6 compares our proposal with existing work.
Section 7 concludes and discusses future work.

2. PROBLEM
In this section we illustrate the problems (1)–(3) for modular rea-

soning about (i) behaviors and (ii) flows of exceptions during an-
nouncement and handling of events in Ptolemy [31].

2.1 Modular Reasoning about Behaviors of
Exceptions

As an example of modular reasoning about behaviors of excep-
tions during event announcement and handling, consider verifica-
tion of the JML-like assertion Φb on line 11 of Figure 1. Fig-
ure 1 and Figure 2 illustrate a savings bank account with a with-
draw functionality. The assertion Φb says that: an account is
not withdrawn if an exception RegDExc is thrown during the an-
nouncement and handling of the event WithdrawEv, lines 5–8.
In other words the balance of the account is not changed if the an-
nouncement and handling of WithdrawEv terminates abnormally
by throwing a RegDExc exception. The expression old refers to
the values of variables at the beginning of the method withdraw.

To verify the assertion Φb one should understand the excep-
tional behavior of the announcement and handling of the event
WithdrawEv, lines 5–8, for the exception RegDExc. This in-
volves understanding the exceptional behaviors of the unknown ob-
servers of WithdrawEv, which are invoked in a chain upon its an-
nouncement, and also the exceptional behavior of the body of the
announce expression itself, lines 6–7. The exceptional behavior of
an observer for an exception is the state of the observer right before
throwing the exception [25]. For such understanding to be mod-
ular [23], one may only use the implementation and the interface
of the subject module Savings, lines 1–14, and the interfaces it
references, i.e. event type WithdrawEv, lines 29–38 of Figure 2.
The reasoning must be independent of system configuration, i.e.
unknown observers of WithdrawEv or their execution order in
their chain. However, neither the implementation of the subject nor
the event type declaration provides any knowledge about the excep-
tions that the observers of WithdrawEv may throw, i.e. problem
(1), or their exceptional behaviors if they terminate abnormally by
throwing RegDExc, i.e. problem (2). To better understand these
problems we provide a short background on Ptolemy.

2.1.1 Ptolemy Language in a Nutshell
The language Ptolemy is an II extension of Java with support for

explicit announcement and handling of typed events [31]. In Fig-
ure 1, written in Ptolemy, the subject module Savings explicitly
announces the event WithdrawEv using the announce expres-
sion, lines 5–8, with the event body on lines 6–7. The observer
module Check, lines 15–27 shows interest in the event using the
when − do binding declaration, line 24, and dynamically registers
itself to handle it using the register expression, line 26. The
observer Check runs the observer handler method check upon
announcement of WithdrawEv. The observer Check checks for
undesired behaviors of withdraw, such as overdrawing or violation
of maximum number of withdrawals of accounts, etc. For brevity,
Check only checks for maximum number of monthly withdrawals
of savings accounts that is limited to 6 according to U.S. Fed-
eral Reserve board Regulation D. The field numWithdrawals
keeps track of the number of withdrawals. The observer Check
throws an exception RegDExc if Regulation D is violated, line 20.
In Ptolemy, the subject Savings and the observer Check know
about the event WithdrawEv, however, they do not know about
each other which in turn means that the subject does not know about
its observers or their exceptions, i.e. problem (1).

In Ptolemy, zero or more observers could register for the same
event. Similar to AspectJ [21, 22], these observers form a chain

1 class Savings {
2 int bal; int numWithdrawals;
3 void withdraw(int amt) throws Throwable{
4 try{
5 announce WithdrawEv(this,amt){
6 bal-= amt;
7 numWithdrawals++;
8 }
9 }

10 catch(RegDExc e){
11 //@ assert this.bal==old(this.bal);
12 throw e; }
13 catch(RuntimeException e){ e.printStackTrace(); }
14 } .. }

15 class Check {
16 void check(WithdrawEv next) throws Throwable{
17 refining
18 establishes next.acc().bal==old(next.acc().bal){
19 if(next.acc().numWithdrawals>=6)
20 throw new RegDExc();
21 }
22 next.invoke();
23 }
24 when WithdrawEv do check;
25

26 Check(){ register(this); }
27 }
28 class RegDExc extends Exception {}

Figure 1: Savings bank account example in Ptolemy [31] with the subject Savings and the observer Check.

based on their dynamic registration order, with the event body at
the end of the chain. Upon announcement of the event the con-
trol is transferred from the subject to the first observer in the chain
that at some point during its execution may decide to invoke the
next observer in the chain, using the invoke expression, line 22.
The invoke expression is the equivalent of AspectJ’s proceed.
The chain of the observers for WithdrawEv is stored in an event
closure next, that is passed as a parameter to its observer handler
method check, line 16. The subject Savings does not statically
know about its observers or their execution order in the chain.

The event WithdrawEv should be declared before it is an-
nounced or handled. The declaration of WithdrawEv in Fig-
ure 2 lists a set of context variables, lines 30–31, and has a greybox
translucid contract, lines 32–37. The context variables are shared
information between the subject and its observers and their val-
ues are provided by the subject when the event is announced, line
5. Translucid contracts [2] are discussed later in this section. The
event WithdrawEv does not give the subject Savings any in-
formation about the exceptions of its observers, i.e. problem (1).

29 void event WithdrawEv{
30 Savings acc;
31 int amt;
32 requires acc!=null
33 assumes{
34 establishes next.acc().bal==old(next.acc().bal);
35 next.invoke();
36 }
37 ensures acc.bal<=old(acc.bal)
38 }

Figure 2: Event WithdrawEv with a translucid contract, lines
32–37.

Exception Handling in Ptolemy To cope with the unknown
exceptions of its observers, and especially their checked ex-
ceptions, the subject Savings adds a general throws clause
throws Throwable to the signature of the method withdraw
which announces WithdrawEv, line 3. The same is true for the
observer Check and its observer handler method check, line 16,
since it invokes other unknown observers of WithdrawEv with
their unknown exceptions using the invoke expression. However,
these general catch clauses hardly provide any information about
the exceptions of the observers of WithdrawEv since they basi-
cally allow any checked exceptions. As in Java, in Ptolemy checked
exceptions are propagated explicitly by declaring them in method
headers but unchecked exceptions are propagated implicitly.

Translucid Contracts in Ptolemy The translucid contract of
WithdrawEv, lines 32–37 of Figure 2, is a greybox specifica-

tion [4] that enables modular reasoning about the normal behavior
and control effects of its announcement and handling. The normal
behavior of the announcement and handling of WithdrawEv is
specified using the precondition requires, line 32, and the post-
condition ensures, line 37. The control effects for the normal be-
havior are specified by the assumes block, lines 33–36, that limits
the implementation structure of the observers of the event. The
assumes block is a combination of program and specification ex-
pressions. The program expression, line 35, exposes the control
effects of interest in the implementations of the observers such as
Check, whereas the specification expression, line 34, hides the
rest of the implementations of the observers and allows them to
vary as long as they respect the specification. The assumes block
on lines 33–36 says that observers of WithdrawEv can do any-
thing as long as they do not change the balance of the account acc,
i.e. establishes next.acc().bal == old(next.acc().bal), and
then invoke the next observer in the chain using next.invoke().
The expression next.acc() returns the context variable acc.

Refinement of Translucid Contracts Refinement rules for the
translucid contract of WithdrawEv enable modular reasoning
about normal behavior and control effects of its announcement and
handling, independent of its unknown observers and their execution
order [2]. The refinement rules require each subject and observer of
WithdrawEv to satisfy the pre- and postconditions of its translu-
cid contract. They also require the observers to structurally refine
the assumes block of the translucid contract. For the observer han-
dler method check, lines 16–23 in Figure 1, to structurally refine
the assume block of WithdrawEv, lines 33–36 in Figure 2, the
following conditions should hold: for each program expression in
the assumes block, line 35, the refining observer check must have
a textually matching program expression in its implementation at
the same place, line 22; and for each specification expression in
the assumes block, line 34, the observer must have a refining
expression with the same specification in its implementation at the
same place, lines 17–21. Using the contract of WithdrawEv one
may conclude that upon announcement and normal termination of
WithdrawEv all of its observers in the chain are invoked. This is
valid since each observer of WithdrawEv has to refine its contract
and have the invoke expression in its implementation. However the
translucid contract only works for normal execution of announce-
ment and handling of WithdrawEv, i.e. no exceptions thrown,
and doe not provide any information about the exceptions of its
observers, their behaviors or flows, i.e. problems (1)–(3).

2.1.2 Boundary Exceptions in Ptolemy
As illustrated, in Ptolemy the subject Savings does not know

about exceptions of its observers, i.e. problem (1), and the throws

clauses throws Throwable in the signature of the observer han-
dler methods do not address the problem. Previous work on join
point interfaces (JPI) [3] solves this problem for checked excep-
tions by specifying the set of checked exceptions that the observers
may throw. Following JPI, we limit the set of checked exceptions
of the observers of an event and call these exceptions boundary
exceptions. Figure 3 illustrates the boundary exception RegDExc
for the observers of WithdrawEv in its declaration, line 29. The
boundary exception RegDExc also limits the set of the checked
exceptions of the subject Savings. With the boundary excep-
tion RegDExc, the throws clauses of the methods withdraw and
check should be changed to throws RegDExc since it is the only
checked exception they can throw.

29 void event WithdrawEv throws RegDExc{
30 .. /* the same as before */
31 }

Figure 3: boundary exception RegDExc, line 29.

However, the boundary exception of WithdrawEv does not
say anything about the behaviors and flows of RegDExc or the
unchecked exceptions of its observers, their behaviors or flows in
the chain of the observers, i.e. problems (2)–(3).

2.2 Modular Reasoning about Flows of Ex-
ceptions

Flows of Checked Exceptions As an example of modular rea-
soning about flows of checked exceptions during event announce-
ment and handling, consider verification of a requirement Φf1
that says: the checked boundary exception RegDExc must be
propagated back to the subject Savings, if thrown by any ob-
server of WithdrawEv during its announcement and handling.
In other words, an exception RegDExc thrown by one observer of
WithdrawEv must not be caught by another one of its observers
in the chain of the observers. The checked exception RegDExc
is used by the observer Check to tell the subject that the with-
drawal operation terminated unsuccessfully. The subject in turn
propagates the exception back to its clients, line 12, which suppos-
edly have more contextual information to handle it. If the exception
RegDExc is thrown but does not reach the subject, then the subject
and consequently its clients may wrongly assume the successful
termination of the withdraw, which is an undesired behavior.

1 class Logger{
2 void log(WithdrawEv next) throws RegDExc{
3 try{
4 refining
5 establishes next.acc().bal==old(next.acc().bal){
6 Log.logTrans(next.acc(),"withdraw");
7 }
8 next.invoke();
9 }

10 catch(Exception e){} /* swallow */
11 }
12 when WithdrawEv do log;
13 }

Figure 4: Observer Logger could swallow RegDExc depend-
ing on its execution order in the chain of the observers.

This could happen if another observer, say Logger 1 in Fig-
ure 4, registers and runs before Check in the chain of the ob-
1Translucid contracts in Ptolemy [2] do not support throwing and
handling of exceptions and only work for normal execution. One
way of treating try-catch expressions in observers such as Logger

servers. Now when WithdrawEv is announced, the observer
Logger runs and invokes the observer Check using its invoke
expression, line 8, which throws a RegDExc. However, the
try−catch expression around the invoke expression of Logger,
lines 3 and 10, catches the exception and swallows it, line 10.

To reason about and verify Φf1, one should understand the flow
of RegDExc among the observers of WithdrawEv in the chain
of the observers. For the reasoning to be modular, one may only
use the implementation and interface of the subject Savings and
the declaration of the event WithdrawEv, independent of system
configuration. However, neither the subject nor the event provides
any knowledge about the flows of the exceptions among the ob-
servers, i.e. problem (3).

The execution order of the observers in their chain is also impor-
tant in reasoning about Φf1. If Logger runs before Check then
Φf1 is violated because Logger swallows RegDExc thrown by
Check. However, if the execution order is reversed, i.e. Check
runs before Logger, then RegDExc propagates back to the sub-
ject and Φf1 holds.

Flows of Unchecked Exceptions The boundary exception
of WithdrawEv tells the subject Savings that its observers
may only throw the checked exception RegDExc, however, it
does not say anything about their unchecked exceptions. To
handle the unknown unchecked exceptions of the observers
the subject Savings catches these exceptions using catch
(RuntimeException e) {..} and prints out their backtraces, line
13. However, this catch clause could be unused especially if no
unchecked exceptions of the observers reaches the subject. We re-
fer to this property as Φf2. Such an unused catch clause, which
is trying to catch exceptions that do not reach it, is an example of
a bad programming practice. Coelho et al. [6] categorizes such
unused catch clauses as residual catch bugs. Bug patterns are dis-
cussed in more details in Section 5.

Again, different orders of the execution of the observers in their
chain entails different results regarding Φf2. The catch clause on
line 13 of Figure 1 is unused, if the observer Logger runs be-
fore other observers of WithdrawEv in the chain. Recall that in
Ptolemy the body of the announce expression is at the end of the
chain. The try-catch expression around the invoke expression in
Logger, lines 3 and 10, catches and swallows not only the checked
boundary exception RegDExc but also all unchecked exceptions
of the observers which run after it in the chain, before these excep-
tions reach the subject Savings. However, if an observers runs
before Logger in the chain and throws an unchecked exception
then this exception could reach the subject Savings and thus its
catch clause will actually be used and necessary.

3. Ptolemyχ
In this section we describe Ptolemyχ’s core syntax and specifi-

cation features for stating behaviors and flows of exceptions during
event announcement and handling and address the problems (1)–(3).

3.1 Program Syntax
Ptolemyχ is an exception-aware extension of Ptolemy [31] with

support for specification and modular reasoning about behaviors
and flows of exceptions during event announcement and handling.
Similar to Ptolemy, Ptolemyχ is an implicit invocation (II) object-
oriented (OO) language with support for explicit announcement
and handling of typed events. The formal definition of Ptolemyχ
is given as an expression language.

is to discard the catch part and only keep the body of the try part,
which represents the normal execution. This allows Logger to
structurally refine its contract in Figure 2.

The syntax of Ptolemyχ’s executable programs is shown in Fig-
ure 5. The syntax supports (typed) events, exceptions, classes, ob-
jects, inheritance and subtyping for classes. Similar to Java, excep-
tions are treated like objects [8] and are divided into checked and
unchecked exceptions. For simplicity, Ptolemyχ does not have
packages, privacy modifiers, abstract classes and methods, static
members, interfaces or constructors. The superscript term shows a
sequence of zero or more term whereas [term] means zero or one,
i.e. optional. A Ptolemyχ’s program (prog) is a collection of dec-
larations (decl) followed by an expression (e), which is like a main
method in Java. There are two types of declarations in Ptolemyχ:
class and event type declarations.

prog ::= decl e
decl ::= class c extends d { form meth binding }

| c event p throws x { form [contract] }
t ::= c | thunk c p
meth ::= t m (form) { e } throws x
form ::= t var, where var 6=this
binding ::= when p do m
ep ::= var | ep.f | ep == ep| ep < ep | ! ep | ep && ep| old(ep)
e,se ::= n | null | var | new c() | e.m(e) | e.f | e.f = e

| if (ep) { e } else { e } | cast c e | form = e; e
| announce p (e) { e } | e.invoke() | register(e)
| refining spec { e } | spec | either { e } or { e }
| throw e | try {e} catch (x var){e}

contract::= requires ep [assumes { se }] ensures ep excp
excp ::= signals (x) ep
spec ::= requires ep ensures ep throws x

where
c ∈ C, set of class names
d ∈ C ∪ {Object}, a set of superclass names
p ∈ P, set of event type names
f ∈ F, set of field names

var ∈ {this, next} ∪ V,V is a set of variable names
x ∈ X ∪ {NoRuntimeExc, Exception, RuntimeException

ClassCastException, NullPointerException},
X is a set of exception names

Figure 5: Ptolemyχ’s syntax, based on [2, 31]

3.1.1 Declarations
In a class declaration, the class has a name (c), a super class (d),

a set of fields (form), methods (meth) and binding declarations
(binding). A binding declaration associates an event type (p) with
an observer handler method (m). In Ptolemyχ observers are nor-
mal classes with handler methods which take a handler chain as
their parameter. Both observer handler methods and non-handler
regular methods (meth) have to declare their checked exceptions
(x) in their throws clauses. However, similar to Java, the dec-
laration of unchecked exceptions is not necessary neither for the
observer handler methods nor for the regular methods.

In an event type declaration, the event has a name (p), a re-
turn type (c), a set of checked boundary exceptions (x), a set
of context variables (form) and an optional translucid contract
(contract). The boundary exceptions of the event are checked ex-
ceptions, named in its throws clause, that limit the set of checked
exceptions that subjects and observers of the event can throw. All
the other checked exceptions must be handled locally by the sub-
jects and observers. The boundary exceptions address the problem
(1) for checked exceptions. For example, Figure 3 lists a bound-
ary exception RegDExc in the declaration of WithdrawEv, line
29. Declaration of the context variables specify types and names of
information shared between the subjects and observers.

3.1.2 Specifications
The idea is to use the translucid contract of an event to reason

about behaviors and flows of the exceptions of its observers inde-

pendent of the unknown observers or their execution order in their
chain. The translucid contract, (contract), is a greybox specifica-
tion that specifies behaviors of both checked and unchecked excep-
tions of subject and observers of an event, during its announcement
and handling. The contract also specifies the set of unchecked ex-
ceptions that subject and observers of the event can throw and the
flows of exceptions among the observers of the event in their chain.

Behaviors of (Un)checked Exceptions In a translucid contract,
behaviors of checked or unchecked exceptions thrown during an-
nouncement and handling of an event is specified using the sig-
nals clauses. A signals clause signals (x) ep lists checked or
unchecked exceptions (x) of the subjects and observers of the event
and associates them with a side effect free postcondition (ep). The
signals clause says if announcement or handling of the event ter-
minates abnormally by throwing any of the exceptions x then it
terminates in a state that satisfies the exceptional postcondition ep.
In other words, if an observer or a subject throws an exception
(x) then it must satisfy the exceptional postcondition (ep). Post-
condition of an exception is the state right before the exception is
thrown [25]. Exceptions with no exceptional postconditions, have
the default postcondition of true. Exceptional postconditions ad-
dress the problem (2). Figure 6 illustrates the exceptional post-
conditions for the checked exception RegDExc, line 9, and the
unchecked exceptions RuntimeException, line 10.

The translucid contract also specifies normal behavior of the an-
nouncement and handling of an event [2]. The normal behavior
requires ep1 ensures ep2 says that if the event is announced in
a state that satisfies the precondition ep1 and its announcement and
handling terminates normally, i.e. throws no exceptions, then it ter-
minates in a state that satisfies the postcondition ep2. The specifi-
cation establishes ep is sugar for requires true ensures ep.

An assumes{se} block in a translucid contract limits the im-
plementation structure of the observers of its event. The body (se)
of the assumes block is a combination of program expressions and
exception-aware specification expressions spec. Program expres-
sions reveal interesting exceptional control flows, e.g. try-catch or
invoke expressions in the implementation of the refining observers,
whereas exception-aware specification expressions hide the rest of
the implementation under refining expressions. Figure 12 illus-
trates an assumes block in the translucid contract of WithdrawEv,
lines 2–9 with the program expressions on lines 3, 6 and 7 and the
exception-aware specification expressions on lines 4–5 and 8.

Limiting Unchecked Exceptions Exception-aware specification
expressions in an assumes block limit the set of unchecked excep-
tions of the subjects and observers of an event, in combination with
program expressions. The exception-aware specification expres-
sion requires ep1 ensures ep2 throws x says that in a re-
fining implementation of an observer, if the execution starts in a
state satisfying the precondition ep1 and terminates normally, it
terminates in a state satisfying the postcondition ep2. However,
if the execution terminates abnormally by throwing an unchecked
exception, then the thrown exception must an exception in x other-
wise the specification expression is violated. The exception-aware
specification expression requires ep1 ensures ep2 is sugar
for requires ep1 ensures ep2 throws RuntimeException.
Exception-aware specification expressions address the problem (1)
for unchecked exceptions.

For example, Figure 6 illustrates an exception-aware specifi-
cation expression on lines 4–5 that allows all unchecked excep-
tions RuntimeException to be thrown by the observers of
WithdrawEv. The program expression next.invoke(), line 6
can throw any unchecked exception since it invokes the next ob-
server of WithdrawEv. Note that the event closure next is

non-null by construction. Figure 11 illustrates another exception-
aware specification expression, line 3–4, that allows no unchecked
exceptions, i.e. NoRuntimeExc. The program expressions
next.invoke() in this figure, line 5, cannot throw any unchecked
exceptions since it invokes the next observer. Finally, Figure 12
illustrates two exception-aware specification expressions, lines 4–5
and 8. The first one allows all unchecked exceptions by a refining
implementation in an observer of WithdrawEv, however, the pro-
gram expression try-catch which surrounds it, lines 3 and 7, catches
all such unchecked exceptions and handles them in a way that itself
may not throw any unchecked exceptions, line 8.

Flows of (Un)checked Exceptions An invoke expression causes
the invocation of the next observers in a chain of observers. Re-
vealing the invoke expression and its enclosing expression in an
assumes block specifies the flows of exceptions of the observers in
the chain of the observers. For example, in Figure 6 an observer
of WithdrawEv is not allowed to catch any exception thrown by
other observers in the chain because there is no try-catch expres-
sion around its invoke expression, line 6. This means any exception
thrown by an observer in the chain propagates back all the way to
its subject without being caught by another observer in the chain.
In Figure 12 an observer can catch an unchecked exception thrown
by another observer in the chain and swallow it because its invoke
expression, line 6, is enclosed by a try-catch expression, lines 3 and
7, however, it cannot catch checked exceptions such as RegDExc.
Because invoke expressions plays a critical role in understanding
the flows of exceptions in the chain of the observers, revealing them
in the the assumes block of the translucid contract of the event is
mandatory. Revealing invoke expressions in the assumes blocks
addresses the problem (3).

In summary, the translucid contract and boundary exceptions of
an event limit the set of checked and unchecked exceptions of the
subjects and unknown observers of an event. The contract speci-
fies the behaviors of the subjects and observers of the event upon
throwing these exceptions and the flows of these exceptions among
the observers in their chain. The idea is to use the translucid con-
tract of the event to reason about its announcement and handling
independent of its unknown observers or their execution order in
the chain. Ptolemyχ’s typing and refinement rules, in Section 4,
ensure that the subjects and observers satisfy these specifications.

3.1.3 Expressions
Ptolemyχ has expressions for throwing and handling of ex-

ceptions and explicit announcement and handling of events. The
expressions throw and try − catch are standard and similar
to Java [8]. The expressions finally and try-catch expressions
with multiple catch clauses are sugars and are omitted from the
syntax. Ptolemyχ supports the built-in exceptions Throwable,
Exception, RuntimeException, NullPointerException and
ClassCastException, similar to exceptions in Java with the
same subtyping relations. Unchecked exceptions are subtypes of
RuntimeException. The exception NoRuntimeExc stands for no
unchecked exception.

In Ptolemyχ, a subject explicitly announces an event (p) using
an announce expression with parameters (e) as its context vari-
ables and the event body (e). The announce expression starts the
execution of the chain of observers for the event (p). An observer
is registered using a register expression that evaluates its param-
eter (e) to an object and puts it into a chain of observers. Expres-
sion invoke evaluates its receiver object (e) into an event closure
and runs it, which in turn causes the next observer in the chain
of observers to run. An event body is at the end of the chain of
the observers. Event closures are also passed to observer handler

methods, e.g. line 16 of Figure 1. The type (thunk c p) ensures the
value of the corresponding actual parameter is of type event clo-
sure with return type (c) for an event (p). The expression next is
the placeholder for the event closure.

3.2 Modular Reasoning about Behaviors of
Exceptions

To enable modular reasoning about behaviors of exceptions in
event announcement and handling, e.g. reasoning about Φb in
Section 2.1, Ptolemyχ provides exceptional postconditions. Fig-
ure 6 illustrates the exceptional postconditions for the checked
boundary exception RegDExc, line 9, and unchecked exceptions
RuntimeException, line 10, The exceptional postcondition
for RegDExc says that if during announcement and handling of
WithdrawEv an exception RegDExc is thrown by its observers
then they must guarantee that the balance of the account acc does
not change, i.e. acc.bal == old(acc.bal).

1 void event WithdrawEv throws RegDExc{ ..
2 requires acc!=null
3 assumes{
4 establishes next.acc().bal==old(next.acc().bal)
5 throws RuntimeException;
6 next.invoke();
7 }
8 ensures acc.bal<=old(acc.bal)
9 signals (RegDExc) acc.bal==old(acc.bal)

10 signals (RuntimeException) true
11 }

Figure 6: Exception-aware specification expression, lines 4–5
and exceptional postconditions, lines 9–10.

Using this guarantee one is able to verify the assertion Φb in
a modular fashion using only the implementation of the subject
Savings, in Figure 1, and the contract of the event WithdrawEv
especially its exceptional postcondition for RegDExc, line 9.
Recall that the assertion Φb says if an exception RegDExc is
thrown during announcement and handling of WithdrawEv the
balance of the account is not changed. Upon announcement of
WithdrawEv the control reaches line 10 of Figure 1 if an ex-
ception RegDExc is thrown by an observer and propagated back
to the subject. According to the exceptional postcondition of
RegDExc the observers of WithdrawEv ensure that the predi-
cate acc.bal == old(acc.bal) is true upon throwing RegDExc.
By replacing the variable this for acc in this exceptional postcon-
dition we get the predicate this.bal == old(this.bal) which is
the same as the assertion Φb that we wanted to verify. Recall that
this is passed as the context variable acc, line 5 of Figure 1.

Such a reasoning is independent of system configuration, i.e. un-
known observers of WithdrawEv or their execution order in their
chain. This reasoning is valid because Ptolemyχ’s refinement rules
require all the observers and subjects of WithdrawEv to satisfy
the exceptional postcondition of RegDExc if they throw it. The
refinement rules are discussed in Section 4.

3.3 Modular Reasoning about Flows of Ex-
ceptions

To enable modular reasoning about flows of exceptions of event
announcement and handling, e.g. reasoning about Φf1 and Φf2
in Section 2.2, Ptolemyχ provides exception-aware specification
expressions and translucid contracts. The contract in Figure 6 says
that a refining observer of WithdrawEv can throw any unchecked
exception, lines 4–5, however it does not catch any exception
thrown by another observers in the chain of observers, line 6.

The guarantee that an observer of WithdrawEv does not catch
any exception thrown by another observer, means that the prop-
erty Φf1 holds. Recall that Φf1 says if an exception RegDExc
is thrown by an observer of WithdrawEv during its announce-
ment and handling, the exception is propagated back to its sub-
ject. This guarantee also means that the catch clause catch
(RuntimeException e) {..} in Savings, line 13 of Figure 1
is necessary, i.e. Φf2, since an unchecked exception thrown by an
observer propagates back to the subject. However, if the contract
in Figure 11 is used instead of the contract in Figure 6 in reason-
ing, then such a catch clause will be unused, since the observers
refining this contract cannot throw any unchecked exceptions, lines
3–4, and thus no unchecked exceptions reaches the subject.

Again only the implementation of the subject Savings and the
contract of event WithdrawEv is enough for reasoning about Φf1
and Φf2, independent of system configuration, i.e. unknown ob-
servers or their execution order in their chain. This is only valid
because Ptolemyχ’s type system and refinement rules ensure that
subjects and observers of an event respect their contract.

4. MODULAR REASONING AND REFINE-
MENT IN Ptolemyχ

Ptolemyχ enables reasoning about behaviors and flows of ex-
ceptions of observers using translucid contracts, as illustrated in
Section 3.2 and Section 3.3. Such a reasoning is modular and in-
dependent of system configuration, i.e. unknown observers or their
execution order in their chain, because of the following guarantees:

• each subject and observer of an event only throws the excep-
tions it is allowed to throw according;

• each subject and observer satisfies the exceptional postcon-
ditions of these exceptions upon throwing them; and

• each observer only throws and handles the exceptions at the
places specified in its implementation.

These guarantees are provided by Ptolemyχ’s type checking rules,
refinement rules for static structural refinement and runtime asser-
tion checking of translucid contracts. These refinement rules re-
strict both subjects and observers of an event and are different from
refinement rules in specification languages such as JML [25], al-
though they may look similar syntactically.

4.1 Static Semantics
Ptolemyχ’s typing rules ensure that each subject and observer

of an event only throws the checked boundary exception they are
allowed to. The typing rules also check for structural refinement
of the event’s contract that ensures each observer only throws and
handles the exceptions at the specified places in its implementation.
Previous work on join point interfaces [3] informally discusses the
typing rules for boundary-like exceptions, however, it does not pro-
vide any formalization or soundness proof.

4.1.1 Type Attributes
Ptolemyχ tying rules use the type attributes of Figure 7 in which

regular types are augmented with a set of checked exceptions x.
The type attribute exp t, x denotes expressions of type t that

may throw the checked exceptions x. Variables do not throw ex-
ceptions and are denoted by var t. The type attribute OK is used
to type check top level declarations whereas OK in c is used for
type checking of lower level declarations in the context of an up-
per level declaration c. In Ptolemyχ, similar to Java, a checked

θ ::= “type attributes”
OK “program/top-level declaration”
| OK in c “method, binding”
| var t “var/formal/field”
| exp t, x “expression”

where ∀x ∈ x. isChecked(x)
| ⊥, x “bottom type”

Γ ::= {var : t} “type environment”
where var ⊆ ({this, next} ∪ V),

Π ::= {loc : t} “store typing”
where loc ⊆ L,
L is set of location names

Γ|Π ` e : θ “typing judgement”

Figure 7: Type attributes, based on [31].

exception is a subtype of Exception that is not a subtype of
RuntimeException. The auxiliary function isChecked checks
if an exception is a checked exception. The typing rules and aux-
iliary functions use a fixed class table CT which is a list of event
type and class declarations. We require distinct top level names and
acyclic inheritance relations for classes in CT . The typing judge-
ment Γ|Π ` e : θ says that in the typing environment Γ and store
typing Π the expression e has the type θ. Figure 8 shows select
typing rules for Ptolemyχ. The full set of typing rule could be
found in our technical report [1].

4.1.2 Declaration Typing Rules
One may assume that subjects and observers of an event can

throw any subtypes of its checked boundary exceptions. However
as observed in previous work on JPIs [3], the observers can throw
any subtype of the boundary exceptions and the subjects can only
throw them invariantly. This is to avoid situations in which an ob-
server may throw an exception that its subjects cannot handle, e.g.
for a boundary exceptionEb if a subject throwsEs and an observer
throwsEo, such thatEs <: Eo <: Eb, then the subject cannot han-
dle Eo [3]. The observers can throw any subtypes of the boundary
exceptions. Such a relation is denoted using ⊆: which combines
subtype and subset relations.

The rule (T-BINDING) type checks an observer of the event (p)
and its binding declaration. The rule checks for the relation ⊆: be-
tween the checked exceptions (x′) of the observer handler method
(m) of the event (p) and its boundary exceptions (x), i.e. x′ ⊆: x.
Similar to non handler methods, the observer handler method (m)
must declare its checked exceptions (x′). The rule (T-BINDING) also
ensures that the body (e) of the observer handler method (m) struc-
turally refines the body (se) of the assumes block of its translucid
contract of (contract), i.e. sev e. The structural refinement v is
discussed in Section 4.2.

The rule (T-EVENTTYPE) type checks declaration of the event (p).
The body (se) of the assumes block in the translucid contract of (p)
specifies the implementation structure of its observers. This means,
the same ⊆: relation between checked exceptions of an observer
and the boundary exceptions of its event must exist between the
checked exceptions (x′) of the assumes block (se) and the boundary
exceptions (x) of its event (p), i.e. x′ ⊆: x . The type (t′) of (se)
should also be a subtype <: of the return type (c) of the event.

4.1.3 Expression Typing Rules
Similar to the rule (T-BINDING) that type checks observers of an

event (p), the rule (T-ANNOUNCE) type checks its subjects and espe-
cially their announce expressions. The subjects can only throw ex-
act boundary exceptions invariantly. This means that the set of the
checked exceptions (x′′) of the subject must be in a subset relation
⊆ with the boundary exceptions (x) of the event (p), i.e. x′′ ⊆ x.
The relation ⊆ is different from ⊆: since it does not allow the sub-

(T-BINDING)
t m(thunk t p var) throws x′ {e} = CT (c,m)

t event p throws x {form contract} ∈ CT
contract = requires ep1 assumes {se} ensures ep2 excp

x′ ⊆: x se v e
` (when p dom) : OK in c

(T-EVENTTYPE)
contract = requires ep1 assumes {se} ensures ep2 excp

∀x ∈ x. isChecked(x)

var : t ` se : exp t′, x′ t′ <: c x′ ⊆: x

` c event p throws x {t var; contract} : OK

(T-ANNOUNCE)
c event p throws x {t′ var′; contract} ∈ CT

∀ei ∈ e. Γ|Π ` ei : exp ti, xi Γ|Π ` e : exp t′, x′

∀ti, t′i ∈ t′. ti <: t′i t′ <: c x′′ =
⋃
xi ∪ x′ x′′ ⊆ x

Γ|Π ` announce p (e) {e} : exp c, x′′

(T-INVOKE)
c event p throws x {form contract} ∈ CT

Γ|Π ` e : exp thunk c p, x′ x′ == x

Γ|Π ` e.invoke () : exp c, x

(T-REGISTER)
Γ|Π ` e : exp t, x

Γ|Π ` register (e) : exp t, x

(T-SPEC)
Γ|Π ` ep1 : exp t1, ∅

Γ|Π ` ep2 : exp t2, ∅ ∀ x ∈ x. x <: RuntimeException

Γ|Π ` requires ep1 ensures ep2 throws x : exp ⊥, ∅

(T-REFINING)
spec = requires ep1 ensures ep2 throws x

Γ|Π ` spec : exp⊥, ∅ Γ|Π ` e : exp t, x

Γ|Π ` refining spec {e} : exp t, x

(T-THROW)
Γ|Π ` e : exp t, x

t <: Throwable isChecked(t) ? x′ = {t} : x′ = ∅
Γ|Π ` throw e : exp ⊥, x′ ∪ x

(T-TRYCATCH)
Γ|Π ` e1 : exp t, x1

Γ, var : x|Π ` e2 : exp t, x2 x = {xi |xi ∈ x1 ∧ !(xi <: x)}
Γ|Π ` try {e1} catch (x var) {e2} : exp t, x ∪ x2

Auxiliary Functions:
isChecked(x) = (x <: Exception) ∧ !(x <: RuntimeException)
x1 ⊆: x2 = ∀x1 ∈ x1,∃ x2 ∈ x2. x1 <: x2

Figure 8: Ptolemyχ’s select typing rules, based on [8, 31].

ject to throw subtypes of the boundary exceptions. The set of the
checked exception (x′′) of the subject is the union of the set of
checked exceptions (x′) for the body (e) of its announce expression
and the set of checked exceptions (xi) for its parameters (ei), i.e.
x′′ =

⋃
xi ∪ x′. The rule also checks that the types (ti) of the pa-

rameters (ei) of the announce expression are subtypes of the types
(t′i) of the context variables of the event. The same should hold
for the type (t′) of the body (e) of the announce expression and the
return type (c) of the event (p).

The rule (T-INVOKE) type checks an invoke expression. The in-
voke expression invokes the next observer of an event in the chain

of its observers. The chain of the observers is included in its
event closure receiver object (e). The event closure for an event
(p) with return type (c) and the boundary exceptions (x) is of type
thunk c p, x′. The rule checks for the equality of the set checked
exceptions (x′) of the invoke expression and the set of the bound-
ary exceptions (x) of its event (p), i.e. x′ == x . The rule
(T-REGISTER) says that the set of checked exceptions (x) of a regis-
ter expression is set of checked exceptions of its parameter (e).

The rule (T-SPEC) type checks an exception-aware specification
expression. It checks that the side effect free pre- and postcondi-
tions (ep1) and (ep2) throw no checked exceptions and the excep-
tion set (x) listed in its throws clause are unchecked exceptions, i.e.
subtype of RuntimeException. The exception-aware specifica-
tion expression throws no checked exceptions because it is a spec-
ification expression and has the bottom type ⊥ that is a subtype
of any other type. The rule (T-REFINING) type checks a refining
expression that refines an exception-aware specification expression
(spec). The rule simply says that the set of checked exceptions (x)
of the refining expression is the same as the set of checked excep-
tions of its body (e).

The rule (T-THROW) type checks a throw expression. It adds
the thrown exception (t) to the exception set (x) of the expres-
sion, if the exception is a checked exception. The conditional
isChecked(t) ? x′ = {t} : x′ = ∅ checks if (t) is a checked ex-
ception. Recall that the typing rules only keep track of the checked
exceptions and not unchecked exceptions. The rule (T-TRYCATCH)
type checks a try-catch expression. It computes the set of checked
exceptions (x1) of the body (e1) of the try part and then factors out
checked exceptions that are subtypes of the exception (x) handled
by the catch part. The result is the set of the checked exceptions (x)
that are thrown by the try part and not handled in the catch part. The
body of the catch part itself can throw the checked exceptions (x2).
The set of the checked exceptions of the try-catch expression is the
union of (x) and (x2). The rest of the expression typing rules com-
pose the set of checked exceptions thrown by subexpressions of an
expression, based on the compositional rules of the language [1].

4.1.4 Soundness and Dynamic Semantics
Ptolemyχ’s type system is proven sound following the standard

progress and preservation arguments. Treatment of features such
as exception-aware specification expressions, translucid contracts
and refining expressions are new in the dynamic semantics and the
proof. The proof of soundness and the full set of Ptolemyχ’s dy-
namic and static semantics rules could be found in our report [1].

4.2 Structural Refinement
Structural refinement rules ensure that each observer of an event

only throws and handles the exceptions at the places in its imple-
mentation as specified by the assumes block of its contract. Fig-
ure 9 shows select rules for Ptolemyχ’s structural refinement.

For an observer of the event (p), the implementation (e) of its
observer handler method (m) structurally refines the assumes block
(se) of its translucid contract, i.e. sev e, if the following holds: for
each program expression in (se) there is a textually match program
expression in (e) at the same place, e.g. the rule var for the variable
expressions. And for each exception-aware specification expres-
sion spec in (se) there is a refining expression refining spec{e}
at the same place in the implementation which claims to refine
spec. The rule for either{se1}or{se2} allows the observer to
either refine (se1) or (se2) and thus allow variability in the ob-
servers. Structural refinement for other expressions is based on the
refinement of their subexpressions. For example, the try-catch ex-
pression try {se1} catch (x var) {se2} is structurally refined by

c event p throws x {form contract} ∈ CT
contract = requires ep1 assumes {se} ensures ep2 excp

when p dom and c m(thunk c p next){e} ∈ CT
se is structurally refined by e, sev e, as follows:

Cases of (se) Refined by (e) Side conditions
var var
t var = se1; se2 t var = e1; e2 se1v e1,se2v e2
if(sp){se1}
else{se2}

if(ep){e1} else{e2} spv ep,
se1v e1,se2v e2

either {se1} or {se2} e se1v e ∨ se2v e
se.invoke () e.invoke () sev e
announce p(se) {se} announce p(e) {e} sev e, sev e
try {se1}
catch (x var){se2}

try {e1}
catch (x var){e2}

se1v e1,se2v e2

throw se throw e sev e
spec refining spec{e}

Figure 9: Select rules for structural refinement, based on [2,34].

try{e1}catch(x var){e2} if its subexpressions (se1) and (se2)
are refined by the subexpressions (e1) and (e2).

4.3 Runtime Assertion Checking
Structural refinement rules ensure that for each exception-

aware specification expression (spec) of the form requires ep1
ensures ep2 throws x in a translucid contract of an event, there
is a refining expression refining spec{e} which claims to refine
(spec), in the implementation of the observers of the event. How-
ever, they do not statically check this claim that the body (e) of
the refining expression only throws the specified unchecked excep-
tions (x). In Ptolemyχ, runtime assertion checking (RAC) does
this check. RAC also ensures that the observers and subjects of
an event satisfy the exceptional postconditions of their exceptions
when they throw them. Figure 10 illustrates, in grey, the runtime
assertion checking for the observer handler method check of Fig-
ure 1 with its translucid contract in Figure 6. The code for RAC is
generated automatically by the compiler.

In Figure 10, a try-catch expression surrounds the original body
of the check to catch the checked and unchecked exceptions that
the observer is allowed to throw, that is RegDExc, lines 22–25,
and RuntimeException, line 26–29, and to check for their ex-
ceptional postconditions, lines 24 and 28. After checking for the
exceptional postconditions, the exceptions are rethrown to avoid
changing of the exceptional control flow of the program, lines 25
and 29. The method Con.signal checks for the exceptional
postcondition of the exception e and aborts the execution or raises
an error of type Error in case of their violation.

There is another try-catch that surrounds the refining expres-
sion, lines 7–15. This try-catch expression catches all unchecked
exceptions of the refining expression and checks if they are al-
lowed to be thrown according to the exception-aware specifica-
tion expression that the refining expression claims to refine, lines
8–12. The method Con.allowedExc checks if the thrown ex-
ception e is among the set of allowed exceptions and aborts the
program if it is not, otherwise it rethrows the exception. In this
example the exception-aware specification expression allows all
unchecked exceptions to be thrown by its refining expression, i.e.
throws RuntimeException on line 9. RAC also checks for the
pre- and normal postcondition of the observer, lines 4 and 20 and
the pre- and normal postcondition of the refining expression, lines
6 and 17, using the methods Con.require and Con.ensure.

5. EVALUATION
In this section, usability of Ptolemyχ’s exception flow reasoning

is evaluated by using it to understand (non-) occurrence of a set of

1 void check(WithdrawEv next) throws RegDExc{
2 try{
3 /* observer’s precondition */
4 Con.require(next.acc()!=null);
5 /* refining precondition */
6 Con.require(true);
7 try{
8 refining establishes next.acc().bal==
9 old(next.acc().bal) throws RuntimeException{

10 if(next.acc().numWithdrawal>=6)
11 throw new RegDExc();
12 }
13 /* allowed unchecked exceptions */
14 } catch(RuntimeException e){
15 Con.allowedExc(e, {RuntimeException.class}); }
16 /* refining postcondition */
17 Con.ensure(next.acc().bal==old(next.acc().bal));
18 next.invoke();
19 /* observer’s normal postcondition */
20 Con.ensure(next.acc().bal<=old(next.acc().bal));
21 }
22 catch(RegDExc e){
23 /* exceptional postcondition */
24 Con.signal(next.acc().bal==old(next.acc().bal),e);
25 throw e; }
26 catch(RuntimeException e){
27 /* exceptional postcondition */
28 Con.signal(true, e);
29 throw e; }
30 }

Figure 10: Runtime assertion checking in the observer Check.

bug patterns [6] for aspect-oriented (AO) programs. The overhead
of the application of Ptolemyχ to a simple Ptolemy program is
also discussed. Understanding the bug patterns requires knowledge
about the set of checked and unchecked exceptions of unknown ob-
servers and flows of these exceptions in the chain of the observers.

5.1 AO Bug Patterns in Ptolemyχ
Despite their differences [31], Ptolemyχ and AO languages such

as AspectJ share some similarities. In these languages a subject
(base code) announces an event implicitly or explicitly, observers
(aspects) register for the event and are invoked implicitly and run in
a chain upon announcement of the event. This in turn suggests that
there may be similarities between bug patterns of these languages.
Coelho et al. [6] introduces a set of AO bug patterns especially with
regard to exception handling. In this section we adapt these bug
patterns to Ptolemyχ for our running bank account example and
show how their occurrence or non occurrence could be understood
using Ptolemyχ’s exception flow reasoning.

Coelho et al. [6] recognize 5 category of bug patterns in AO:
(i) throw without catch (ii) residual catch (iii) exception stealer (iv)
path dependent throw and (v) fragile catch. The last two bug pat-
terns are not applicable to Ptolemyχ. A path dependent throw bug
occurs when exceptions that a method throws vary based on differ-
ent call chains leading to its invocation. This could happen because
of AO scope designator constructs, such as within and cflow in
AspectJ, that are not supported in Ptolemyχ. A fragile catch bug
occurs when an aspect is supposed to catch an exception in a spe-
cific program point but misses it due to a problematic pointcut , i.e.
pointcut fragility. Pointcut fragility does not happen in Ptolemyχ,
because of its explicit event announcement [31].

5.2 Throw Without Catch
In Ptolemyχ, a throw without catch bug happens when an ob-

server throws an exception during announcement and handling of
an event and there is no handler to catch it, neither on the observer
nor the subject side. This is especially true for unchecked excep-
tions since checked exceptions cannot go uncaught.

Occurrence The subject Savings in Figure 1 and the con-
tract in Figure 6 together illustrate a throw without catch bug, if the
catch (RuntimeException e){..} on line 13 of Figure 1 is in-
advertently forgotten by the developer. Similar to Java, Ptolemyχ
does not complain about the missing catch clause for unchecked ex-
ceptions. The contract for WithdrawEv in Figure 6 allows the ob-
servers of WithdrawEv to throw any unchecked exception, lines
4–5. It also does not allow an observer in the chain to catch any ex-
ceptions thrown by another observer of WithdrawEv since there
is no try-catch surrounding the invoke expression, line 6. Thus if an
observer of WithdrawEv throws an unchecked exception the ex-
ception propagates back to the subject Savings which also does
not catch the exceptions, i.e. the exception goes uncaught during
announcement and handling of WithdrawEv. One may argue that
leaving the catch clause catch (RuntimeException e){..} in its
place on line 13 of Figure 1 avoids the throw without catch bug,
however, this catch clause itself could be unnecessary and unused
and a residual bug if the observers of WithdrawEv do not throw
any unchecked exceptions.

Non Occurrence To ensure non occurrence of a throw without
catch bug during announcement and handling of an event, one may
want to force the observers of the event to not throw any unchecked
exceptions. Figure 11 illustrates a variation of the contract of Fig-
ure 6 in which the observers of WithdrawEv cannot throw any
unchecked exceptions. The exception-aware specification expres-
sion on lines 3–4 limits the set of unchecked exceptions of the ob-
servers of Withdraw to nothing, i.e. throws NoRuntimeExc.

1 void event WithdrawEv throws RegDExc{ ..
2 assumes{
3 establishes next.acc().bal==old(next.acc().bal)
4 throws NoRuntimeExc;
5 next.invoke();
6 } .. }

Figure 11: No unchecked exceptions for observers, lines 3–4.

Figure 12 illustrates another variation of the contract for
WithdrawEv in which each observer has a try-catch expression
in its body, lines 3 and 7–8. The try-catch expressions catches, line
7, any unchecked exception that might be thrown by the observers
and handles them in a way that does not throw any unchecked ex-
ception itself, line 8.

1 void event WithdrawEv throws RegDExc{ ..
2 assumes{
3 try{
4 establishes next.acc().bal==old(next.acc().bal)
5 throws RuntimeException;
6 next.invoke();
7 } catch(RuntimeException e){
8 establishes true throws NoRuntimeExc; }
9 } .. }

Figure 12: Observers handle their unchecked exceptions lo-
cally, lines 3 and 7 and 8.

Unlike the contract in Figure 11, the contract in Figure 12 re-
quires the implementation of the observers of WithdrawEv to be

surrounded by the specified try-catch expression. It also allows an
observer to catch and swallow the unchecked exceptions thrown by
other observers in the chain which is not allowed in Figure 11.

5.3 Residual Catch
In Ptolemyχ, a residual catch bug happens when a subject tries

to catch an exception that is not thrown or is already caught by its
observers before reaching it.

Occurrence The subject Savings in Figure 1 and the con-
tact in Figure 11 together illustrate the occurrence of a residual
catch bug. The subject Savings catches the unchecked excep-
tions thrown by its observers during announcement and handling of
WithdrawEv, line 13. However, the contract for WithdrawEv
in Figure 11 does not allow its observers to throw any unchecked
exceptions, lines 3–4. This in turn means the catch clause on line 13
is not necessary since the subject is trying to catch exceptions that
are not thrown by its observers. Recall that in Ptolemyχ, the con-
tract limits the set of exceptions of both observers and the subject,
5–8 in Figure 1, of the event. Similarly, the subject Savings and
the contract in Figure 12 illustrate a residual bug since the observers
do not throw any unchecked exceptions, however the subject is still
trying to catch them.

Non Occurrence A residual bug does not occur during
announcement and handling of WithdrawEv in the subject
Savings, Figure 1, if its observers do not throw any unchecked
exceptions and its catch clause, lines 13 is omitted. The subject
Savings without the catch (RuntimeException e) {..} and
the contract in Figure 11 illustrate non occurrence of a residual
catch bug. The contract for WithdrawEv in Figure 11 does not
allow its observer to throw any unchecked exception and the sub-
ject does not catch any unchecked exceptions and there is no un-
necessary catch clause. The same is true for the contract in Fig-
ure 12 since it does not allow its observers to throw unchecked ex-
ceptions too. The subject Savings with the catch clause catch
(RuntimeException e) {..} on line 13 and the contract in Fig-
ure 6 illustrate another example of the non occurrence of a residual
bug. Here the contract allows the observers of WithdrawEv to
throw any unchecked exceptions that could be propagated to the
subject. This in turn means that the catch clause in the subject is
actually necessary and used.

5.4 Exception Stealer
An exception stealer bug happens when an exception that was

supposed to be caught by an exception handling observer is caught
by a subject. This bug pattern is a special case of an unintended
handler action where an exception is caught wrongly by an unin-
tended handler. In Ptolemyχ, a variation of this bug happens when
an exception thrown by an observer that was supposed to be caught
by a subject is caught by another observer in the chain.

Occurrence The subject Savings in Figure 1 and the contract
for its WithdrawEv in Figure 13 illustrate the occurrence of an
exception stealer bug. According to the property Φf1 of the bank
account example, Section 2.2, if an exception RegDExc is thrown
during announcement and handling of WithdrawEv it is propa-
gated back to the subject to be handled. However, the try-catch ex-
pression of the contract, lines 3–6 that surrounds the invoke expres-
sion allows an observers of WithdrawEv to catch any exception,
including RegDExc, if thrown by another observer in the chain
and swallow it, line 6, before it reaches the subject Savings.

Non Occurrence The subject Savings in Figure 1 and the con-
tract in Figure 6 illustrate non occurrence of the exception stealer
bug for the exception RegDExc. The contract for WithdrawEv
in Figure 6 does not allow any try-catch expression to surround the

1 void WithdrawEv throws RegDExc{ ..
2 assumes{
3 try{
4 establishes next.acc().bal==old(next.acc().bal);
5 next.invoke();
6 } catch(Exception e){ }/*swallow*/
7 } .. }

Figure 13: Stealing and swallowing unchecked and checked
exceptions through subsumption, line 6.

invoke expression in the implementation of its observers. This in
turn means if an exception RegDExc is thrown by an observer, it is
not caught by other observers in the chain and is propagated back to
the subject. Similarly the contract in Figure 12 does not allow the
checked exception RegDExc thrown by one observer to be stolen
by another observer and propagates it back to Savings. However,
unchecked exceptions thrown by one observer could be caught by
another observer in the chain, line 7.

5.5 Summary of Bug Patterns
Out of the three Coelho et al. ’s bug patterns that are applicable

to Ptolemyχ, (non) occurrence of all of them could be understood
using Ptolemyχ’s exception reasoning technique. The key in rea-
soning about these patterns is to know about the set of checked and
unchecked exceptions of subjects and observers of an event and
especially flow of these exceptions in the chain of the observers.
These patterns in our running bank account example are understood
using only the translucid contract of WithdrawEv.

Bug Pattern Occurrence Non Occurrence
Throw without catch X X
Residual catch X X
Exception stealer X X
Path dependent throw Not applicable to Ptolemyχ
Fragile catch Not applicable to Ptolemyχ

Figure 14: Ptolemyχ’s exception flow reasoning and under-
standing of AO bug patterns [6].

5.6 Application to Ptolemy
In this section we discuss the overhead of the application of

Ptolemyχ to a simple figure editor Ptolemy program, that is
shipped with its compiler distribution. The figure editor allows
creation of simple figures such as points and lines. An event is an-
nounced when a figure moves and an observer updates the screen by
invoking a mock method. The example has 1 event, 1 subject and 1
observer, 7 classes in total with 127 lines of code. One requirement
for the figure editor could be that the observers of the event do not
throw any checked exception and their unchecked exceptions must
be propagated back to the subject for handling.

To specify this requirement a simple translucid contract
requires true assumes{ next.invoke(); establishes true
throws RuntimeException; } ensures true should be added
to the event declaration. Ptolemy’s event declarations do not
have any throws clause which is interpreted as no checked bound-
ary exceptions in Ptolemyχ. The observer of the event should
have a refining expression refining establishes true throws
RuntimeException{..} in its implementation to structurally re-
fine the contract. The contract and the refining expression adds
8 lines of the code to the program which increases its size by
6.2%. However, the compiler could be easily modified to not re-
quire the default pre- and postconditions of requires true and
ensures true and insert the refining expression automatically

based on the structural refinement rules. Thus the real overhead
in terms of lines of code written by the programmer is only 4 lines
of code, i.e. about 3.1%. The programmer only needs to write
the contract in the event type declaration. This overhead varies for
different programs depending on number of events, observers, etc.

6. RELATED WORK
Reasoning in Implicit Invocation (II) Garlan et al. [14] pro-

pose a compositional II reasoning technique to reason about normal
behavior by breaking down a system into independent subsystems
and relying on system configuration such as number of events, their
consumption policy, etc. Dingel et al. [7] propose a rely-guarantee-
like reasoning technique by relying on sound and complete an-
nouncement of semantic-carrying events, and invariants weakened
by location predicates. Krishnaswami et al. [24] verify the structure
and normal behavior of the Observer design pattern using separa-
tion logic by relying on system configuration such as number of
observers and their individual invariants. Our work is focused on
modular reasoning about behaviors and flows of exceptions for ab-
normal termination of event announcement with chained observers,
independent of system configuration.

Join point interfaces (JPIs) [3] enable modular type checking
for an aspect-oriented (AO) language in the presence of excep-
tions. Khatchadourian et al. [20] propose a rely-guarantee-like
technique to reason about normal behaviors and traces of AO pro-
grams. Crosscutting programming interfaces (XPIs) [37] and Join
Point Types (JPTs) [36] allow informal specification and reasoning
about normal behaviors of aspects in AO. Pipa [40] enables global
reasoning about normal and exceptional behaviors in AspectJ. Ex-
ecution levels [10] use level shifting operations to specify the flow
and interaction of exceptions of aspects and base code in AspectJ
to avoid exception conflation. Our proposal is mostly focused on
reasoning about both exceptional behaviors and flows of exceptions
in a non-global and modular fashion.

Reasoning in Explicit Invocation (EI) Supertype abstraction
[26] and ESC/Java [12] allow modular reasoning about normal and
exceptional behaviors using specifications in JML [25]. Jacobs et
al. [16] propose a modular verification technique for invariants and
locking patterns in the presence of unchecked exceptions in mul-
tithreaded programs. Failboxes [17] provide exceptional behav-
ior guarantees in terms of dependency safety. Anchored excep-
tions [39] and the work of Malayeri and Aldrich [28] enable mod-
ular reasoning about flow of exceptions using more expressive ex-
ception interfaces. EJFlow [11] enables reasoning about exception
flow using architectural level exception ducts. Jex [33], and the
works of Jo et al. [18], Sinha et al. [35] and Fu et al. [13] propose
global flow analyses for exceptions in Java. Leroy and Pessaux [27]
propose a type based program analysis to estimate the set of un-
caught exceptions in ML. Abnormal types [9] guarantee types of
exceptions upon abnormal termination. As discussed in Section 1,
these techniques use known invocation relations among modules
of a system and are not concerned about II languages in which a
subject can invoke unknown observers and run them in a chain.

Reasoning Using Greybox Specifications Tyler and Soundara-
jan [38] and Shaner et al. [34] use greybox specifications for veri-
fication of mandatory calls. Rajan et al. [32] use greybox specifi-
cation to reason about web service policies.

7. CONCLUSIONS AND FUTURE WORK
Modular reasoning about behaviors and flows of exceptions

faces unique challenges in event-based implicit invocation (II) lan-
guages such as Ptolemy that allow subjects to invoke unknown

observers and run them in a chain. In this work we have il-
lustrated these challenges in Ptolemy and proposed Ptolemyχ to
address them. Ptolemyχ’s exception-aware specification expres-
sions, boundary exceptions, exceptional postconditions along with
greybox contracts allow limiting the set of exceptions that subjects
and observers of an event may throw and specifying behaviors and
flows of these exceptions. Ptolemyχ’s sound type system, static
structural refinement and runtime assertion checks enable its mod-
ular reasoning independent of unknown observers of an event or
their execution order in the chain of observers.

For future work, the first task would be a precise formalization
of the relation between refinement [30] and structural refinement
for abnormal termination. For normal termination structural refine-
ment implies refinement [2,34]. The second task would be applica-
tion of Ptolemyχ to similar languages and evaluate its robustness.

Acknowledgements This work was supported in part by NSF
grant CCF-10-17334. We thank Rex D. Fernando, Robert Dyer
and the anonymous reviewers of AOSD’13.

8. REFERENCES
[1] M. Bagherzadeh, H. Rajan, and A. Darvish. On exceptions,

events and observer chains. Technical Report 12-12, Iowa
State U., 2012.

[2] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.
Translucid contracts: expressive specification and modular
verification for aspect-oriented interfaces. In AOSD’11.

[3] E. Bodden, E. Tanter, and M. Inostroza. Safe and practical
decoupling of aspects with join point interfaces. Technical
Report TUD-CS-2012-0106, Technische U. Darmstadt.

[4] M. Büchi and W. Weck. The greybox approach: When
blackbox specifications hide too much. Technical Report
297, Turku Center for Computer Science, 1999.

[5] N. Cacho, F. C. Filho, A. Garcia, and E. Figueiredo. EJFlow:
taming exceptional control flows in aspect-oriented
programming. In AOSD’08.

[6] R. Coelho, A. Rashid, A. von Staa, J. Noble, U. Kulesza, and
C. Lucena. A catalogue of bug patterns for exception
handling in aspect-oriented programs. In PLoP’08.

[7] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Towards a
formal treatment of implicit invocation using rely/guarantee
reasoning. Formal Asp. Comput.’98, 10(3).

[8] S. Drossopoulou, S. Eisenbach, and T. Valkevych. Java type
soundness revisited. Technical report, Imperial College.

[9] S. Drossopoulou and T. Valkevych. Java exceptions throw no
surprises. Technical report, Imperial College London, 2000.

[10] I. Figueroa and E. Tanter. A semantics for execution levels
with exceptions. In FOAL’11.

[11] F. Filho, P. da S. Brito, and C. Rubira. Reasoning about
exception flow at the architectural level. In Rigorous
Development of Complex Fault-Tolerant Systems’06.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI’02.

[13] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott.
Robustness testing of Java server applications. TSE’05,
31(4).

[14] D. Garlan, S. Jha, D. Notkin, and J. Dingel. Reasoning about
implicit invocation. In FSE’98.

[15] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In VDM ’91.

[16] B. Jacobs, P. Muller, and F. Piessens. Sound reasoning about
unchecked exceptions. In SEFM’07.

[17] B. Jacobs and F. Piessens. Failboxes: Provably safe
exception handling. In ECOOP 2000.

[18] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Choe. An uncaught
exception analysis for Java. J. Syst. Softw.’04, 72(1).

[19] C. B. Jones. Tentative steps toward a development method
for interfering programs. TOPLAS’83, 5(4).

[20] R. Khatchadourian, J. Dovland, and N. Soundarajan.
Enforcing behavioral constraints in evolving aspect-oriented
programs. In FOAL’08.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In ECOOP’01.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97.

[23] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In ICSE’05.

[24] N. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and
A. Buisse. Design patterns in separation logic. In TLDI’09.

[25] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for
Java. Softw. Eng. Notes’06, 31(3).

[26] G. T. Leavens and W. E. Weihl. Specification and verification
of object-oriented programs using supertype abstraction.
Acta Informatica’95, 32(8).

[27] X. Leroy and F. Pessaux. Type-based analysis of uncaught
exceptions. TOPLAS 2000, 22(2).

[28] D. Malayeri and J. Aldrich. Practical exception
specifications. In Advanced Topics in Exception Handling
Techniques’06.

[29] R. A. Maxion and R. T. Olszewski. Improving software
robustness with dependability cases. In FTCS’98.

[30] J. M. Morris. A theoretical basis for stepwise refinement and
the programming calculus. Sci. Com. Program.’87, 9(3).

[31] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP’08.

[32] H. Rajan, J. Tao, S. M. Shaner, and G. T. Leavens. Tisa: A
language design and modular verification technique for
temporal policies in web services. In ESOP’09.

[33] M. P. Robillard and G. C. Murphy. Static analysis to support
the evolution of exception structure in object-oriented
systems. TOSEM’03, 12(2).

[34] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In OOPSLA ’07.

[35] S. Sinha, A. Orso, and M. J. Harrold. Automated support for
development, maintenance, and testing in the presence of
implicit control flow. In ICSE’04.

[36] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Types and
modularity for implicit invocation with implicit
announcement. TOSEM’10, 20(1).

[37] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. TOSEM’10, 20(2).

[38] B. Tyler and N. Soundarajan. Black-box testing of grey-box
behavior. In FATES’03.

[39] M. van Dooren and E. Steegmans. Combining the robustness
of checked exceptions with the flexibility of unchecked
exceptions using anchored exception declarations. In
OOPSLA’05.

[40] J. Zhao and M. Rinard. Pipa: a behavioral interface
specification language for AspectJ. In FASE’03.

	Introduction
	Contributions

	Problem
	Modular Reasoning about Behaviors of Exceptions
	Ptolemy Language in a Nutshell
	Boundary Exceptions in Ptolemy

	Modular Reasoning about Flows of Exceptions

	Ptolemy
	Program Syntax
	Declarations
	Specifications
	Expressions

	Modular Reasoning about Behaviors of Exceptions
	Modular Reasoning about Flows of Exceptions

	Modular Reasoning and Refinement in Ptolemy
	Static Semantics
	Type Attributes
	Declaration Typing Rules
	Expression Typing Rules
	Soundness and Dynamic Semantics

	Structural Refinement
	Runtime Assertion Checking

	Evaluation
	AO Bug Patterns in Ptolemy
	Throw Without Catch
	Residual Catch
	Exception Stealer
	Summary of Bug Patterns
	Application to Ptolemy

	Related Work
	Conclusions and Future Work
	References

