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ABSTRACT
As aspect-oriented (AO) programming techniques become more
widely used, their use in critical systems such as aircraft and tele-
phone networks, will become more widespread. However, care-
ful reasoning about AO code seems difficult because: (1) advice
may apply in too many places, and (2) standard specification tech-
niques do not limit the control effects of advice. Commonly used
black box specification techniques cannot easily specify control ef-
fects, such as advice that does not proceed to the advised code. In
this work we avoid the first problem by using Ptolemy, a language
with explicit event announcement. To solve the second problem we
give a simple and understandable specification technique, translu-
cid contracts, that not only allows programmers to write modular
specifications for advice and advised code, but also allows them to
reason about the code’s control effects. We show that translucid
contracts support sound modular verification of typical interaction
patterns used in AO code. We also show that translucid contracts
allow interesting control effects to be specified and enforced.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Programming by con-
tract, Assertion checkers; F.3.1 [Specifying and Verifying and
Reasoning about Programs]: Assertions, Invariant, Pre- and post-
conditions, Specification techniques

General Terms
Design, Languages, Verification

Keywords
Translucid contracts, modular reasoning, implicit invocation,
aspect-oriented interfaces, grey box specification, Ptolemy

1. INTRODUCTION
Reasoning about aspect-oriented (AO) programs that use point-

cuts and dynamic advice, as found in AspectJ programs, often
seems difficult, due to two fundamental problems:
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1. Join point shadows, i.e., places in the code where advice may
apply, occur very frequently (e.g., at each method or con-
structor call and each field read and write). And at each join
point shadow, reasoning must take into account the effects of
all applicable advice.

2. The control effects of advice must be understood in order to
reason about a program’s control flow and how advice might
interfere with the execution of other advice.

1.1 Density of Join Point Shadows
As an example of the first problem, consider the straight-line

code in below. In this listing, assuming that x and y are fields, there
are at least 8 join point shadows, including the 5 method calls, the
writes of x and y, and the read of x.

1 x = o1.m1(a.e1(), b.e2());

2 y = o2.m2(c.e3(), x);

Knowing what advice applies where is amenable to tool support.
An example is the Eclipse AspectJ Development Tools (AJDT).
The idea of aspect-aware interfaces [14], is equivalent to such tool
support. However, the number of reasoning tasks grows with the
number of join points and the amount of applicable advice.

One way of avoiding this problem of frequent occurrence of
join point shadows, is to limit where advice may apply, for ex-
ample, by using some form of explicit base-advice interface (AO
interface), e.g. crosscutting interfaces (XPIs), open modules, etc,
[1,7,19,26,27]. This is the approach we adopt in this paper by using
the language Ptolemy [19]. Ptolemy introduces the notion of event
types and limits the join points to explicit event announcements.

To illustrate, consider the Ptolemy code in Figure 1 from the
canonical drawing editor example with functionalities to draw
points, lines and update the display. In Ptolemy, events are ex-
plicitly announced, which mitigates the first problem, as reasoning
about events only needs to happen at program points where events
are explicitly announced (such as lines 5–7). Ptolemy programs
declare event types, which are abstractions over concrete events
in the program. Lines 10–18 declare an event type that is an ab-
straction over program events that cause change in a figure. An
event type declaration may declare variables that make some con-
text available. For example, on line 11, the changing figure, named
fe, is made available. Concrete events of this type are explicitly
and declaratively created using announce expressions as shown
on lines 5–7. Like Eos [20, 21], Ptolemy doesn’t distinguish be-
tween aspects and classes. On lines 19–28 is the Ptolemy’s equiv-
alent of an AspectJ-like advice, which advises calls to the method
setX. The Update class has a binding declaration on line 27



1 class Fig { }

2 class Point extends Fig {

3  int x, y;

4  Fig setX(int x){

5   announce Changed(this){

6    this.x = x; this

7   }

8  }

9 }

5   

6    
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) 10 Fig event Changed {

11  Fig fe;

12  requires fe != null

13  .

14  .

15  .

16  .

17  ensures fe != null

18 }

Fig fe;

requires fe != null

.

.

.

.

ensures fe != null

Event

Declaration

19 class Update {

20  Update init(){ register(this)}

21  Fig update(thunk Fig rest, Fig fe){

22   invoke(rest);

23   .

24  Display.update(fe); fe

25   .

26  }

27  when Changed do update; 

28 }

27  when 

Quantification

Update init(){ 

thunk

); fe

update; 

Registration

Black Box

Contract

Figure 1: A behavioral contract for aspect interfaces using Ptolemy [19] as the implementation language. See Section 2.1 for syntax.

that says to run the handler method update whenever events of
type Changed are signaled. In Ptolemy’s terminology advice are
called handlers. Ptolemy also provides dynamic registration using
register, as shown on line 20, which activates the current in-
stance of the Update class as an observer for the event Changed.

1.2 Reasoning about Control Effects
As an example of the second problem, understanding control ef-

fects of the advice, consider the Logging handler in the listing
below that advises the same set of events advised by Update han-
dler in Figure 1. To understand the control flow at these events
matched by these handlers a developer must understand the control
flow of both handlers. Furthermore, to understand the behavior at
such events one must also understand the control flow of all other
handlers that may advise the same events.

29 class Logging{

30  …

31  Fig log(thunk Fig rest, Fig fe){

32   invoke(rest);

33   Log.logChanges(fe); fe

34  }

35  when Changed do log;

36 }

Design by contract (DBC) methodologies for aspect-oriented
software development (AOSD) have been explored before [13, 27,
30], however, existing work relies on black box behavioral con-
tracts. Such behavioral contracts specify, for each of the aspect’s
advice methods, the relationships between its inputs and outputs,
and treat the implementation of the aspect as a black box, hiding
all the aspect’s internal states. As shown in Figure 1, event type
Changed declares a black box contract on lines 12–17. Phrases
“behavioral contract” and “black box contract” are used inter-
changeably throughout the paper.

However, the black box contract on lines 12–17 does not spec-
ify the control effects of the handler. For example, with just the
black box contract of the event type Changed given, one cannot
determine whether a call such as p.setX(3) will proceed to exe-
cute the body of setX, and thus whether such a call will always set
the current x coordinate of p to its argument (3). If the expression
invoke in the handler method update is forgotten inadvertently,
the execution of the body of method setX will be skipped. This is
equivalent to missing the call to proceed in an advice in AspectJ.
Such assertions are important for reasoning, which depends on un-
derstanding the effect of composing the handler modules with the
base code [23, 27]. That is, the contract does not specify whether
the handler must always proceed.

This limitation of black box contracts was discussed in a pre-
liminary version of this paper [2]. Ideas from Zhao and Rinard’s

Pipa language [30], if applied to AO interfaces help to some ex-
tent. However, as we discuss in greater detail in Section 5, Pipa’s
expressiveness beyond simple control flow properties is limited.

Even if programmers don’t use formal techniques to reason
about their programs, contracts for AO interfaces can serve as the
programming guidelines for imposing design rules [27]. But black
box contracts for AO interfaces yield insufficiently specified design
rules that leave too much room for interpretation, which may dif-
fer significantly from programmer to programmer. This may cause
inadvertent inconsistencies in AO program designs and implemen-
tations, leading to hard to find errors.

Another problem with such black box contracts is that they do
not help with effectively reasoning about the effects of aspects on
each other. Consider another example concern, say Logging,
which writes a log file at the events specified by Changed. For
this concern different orders of composition with the Update
concern in Figure 1 could lead to different results. (In AspectJ
declare precedence can be used to enforce an ordering on
aspects and the application of their advice.) Suppose line 22 of
Figure 1 was omitted; that is, suppose that Update handler did
not proceed. In that case, if Update were to run first, followed
by Logging, then the evaluation of Logging would be skipped.
Conversely, Logging would work (i.e., it would write the log file)
if the handlers were composed in the opposite order. A handler
developer cannot, by just looking at the black box contract of the
event type, reason about the composition of such handlers. Rather
a developer must be aware of the control effects of the code in all
composed handlers. Furthermore, if any of these handlers changes
(i.e., if their control effects change), one must reason about every
other handler that applies at the same events.

The main contribution of this work is the notion of translucid
contracts for AO interfaces, which is based on grey box specifica-
tion [6]. A translucid contract for an AO interface can be thought of
as an abstract algorithm describing the behavior of aspects that ap-
ply to that AO interface. The algorithm is abstract in the sense that
it may suppress many actual implementation details, only specify-
ing their effects using specification expressions. This allows the
specifier to decide to hide some details, while revealing others.
As in the refinement calculus, code satisfies an abstract algorithm
specification if the code refines the specification [16], but we use a
restricted form of refinement that requires structural similarity, to
allow specification of control effects.

We have added an example translucid contract to the AO in-
terface, event type Changed, on lines 12–17 of Figure 2. Un-
like a black box behavioral contract, internal states of the han-
dler methods (which correspond to advice) that run when the event
Changed is announced (this corresponds to a join point occur-
rence) are exposed in the translucid contract. In particular, any



10 Fig event Changed {

11  …

12  requires fe != null

13  assumes{

14   invoke(next);

15   establishes fe==old(fe) 

16  }

17  ensures fe != null

18 }

requires fe != null

assumes{

14   invoke(next);

15   establishes fe==old(fe) 

16  }

ensures fe != null

19 class Update {

20  …

21  Fig update(thunk Fig rest, Fig fe){

22   invoke(rest);

23   refining establishes fe==old(fe){

24  Display.update(fe); fe

25   }

26  }

27  …

28 }

null

fe==old(fe)

Translucid

Contract

Figure 2: A translucid contract for event type Changed

occurrence of the invoke expression (which is like AspectJ’s pro-
ceed) in the handler method must be made explicit in the translucid
contract, line 14. This in turn allows the developer of the class
Point that announces the event Changed to understand the con-
trol effects of the handler methods by just inspecting the specifica-
tion of Changed. For example, from line 14 one may conclude
that, irrespective of the concrete handler methods, the body for the
method setX on line 6 of Figure 1 will always be run. Such con-
clusions allow a client of the setX to make more expressive as-
sertions about its control flow without considering every handler
method that may potentially run when the event Changed is an-
nounced. Expression next is a specification placeholder for the
event closure passed to the handlers.

Requiring the invoke expression to be made explicit also ben-
efits other handlers that may run when the event Changed is an-
nounced. For example, consider the logging concern discussed ear-
lier. Since the contract of Changed describes the control flow
effects of the handlers, reasoning about the composition of the han-
dler method for logging and other handler methods becomes pos-
sible without knowing about all explicit handler methods that may
run when the event Changed is announced. In this paper we ex-
plicitly focus on the use of translucid contracts for describing and
reasoning about control flow effects.

To soundly reap these benefits, the translucid contract for the
event type Changed must be refined by each conforming handler
method [16]. We borrow the idea of structural refinement from
JML’s model programs [24] and enhance it to support AO inter-
faces, which requires several adaptations that we discuss in Sec-
tion 3. Briefly the handler method update on lines 22–25 in Fig-
ure 2 refines the contract on lines 12–17 because line 22 matches
line 14 and lines 23–25 claim to refine the specification expression
on line 15. The pre- and postconditions of update are considered
the same as the pre- and postconditions of event type specification
on lines 12 and 17, respectively.

1.3 Contributions
In summary, this work makes the following contributions:

• A specification and verification technique for writing con-
tracts for AO interfaces and a proof of the soundness of the
presented specification, verification and reasoning approach;

• An implementation of the proposed specification and verifi-
cation technique in Ptolemy’s compiler [18];

• An analysis of the effectiveness of our contracts using Rinard
et al.’s work [23] on aspect classification which shows our
technique works well for specifying all classes of aspects (as
well as others that Rinard et al. do not classify);

• A comparison and contrast of our specification and verifica-
tion approach with related ideas for AO contracts.

2. TRANSLUCID CONTRACTS
In this section, we describe our notion of translucid contracts

and present a syntax to state these contracts. We use our previous
work on the Ptolemy [19] for this discussion and to adapt Ptolemy’s
syntax and semantics descriptions. We first present Ptolemy’s
programming features and then describe its specification features.

2.1 Program Syntax
Ptolemy is an object-oriented (OO) language with support for

declaring, announcing, and registering with events much like
implicit-invocation (II) languages. The registration in Ptolemy is,
however, much more powerful compared to II languages as it al-
lows developers to quantify over all subjects that announce an event
without actually naming them. This is similar to “quantification”
in aspect-oriented languages such as AspectJ. The formally defined
OO subset of Ptolemy has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling,
built-in value types, privacy modifiers, or abstract methods.

The syntax of Ptolemy executable programs is shown in Figure 3
and explained below. A Ptolemy program consists of zero or more
declarations, and a “main” expression (see Figure 1 and Figure 2).
Declarations are either class declarations or event type declarations.

prog ::= decl e
decl ::= class c extends d { field meth binding }

| t event p { form contract }
field ::= t f;
meth ::= t m (form) { e } | t m (thunk t var, form) { e }
form ::= t var, where var 6=this and var 6=next
binding ::= when p do m
e ::= n | var | null | new c() | e.m( e ) | e.f | e.f = e | form = e; e

| if (ep) { e } else { e } | while (ep) { e } | cast c e | e; e
| register( e ) | invoke ( e ) | announce p ( e ) { e }
| refining spec { e }

ep ::= n | var | ep.f | ep != null | ep == n | ep < n | ! ep | ep && ep

where

n ∈ N , the set of numeric, integer literals
c, d ∈ C, a set of class names
t ∈ C ∪ {int}, a set of types
p ∈ P, a set of event type names
f ∈ F, a set of field names
m ∈ M, a set of method names

var ∈ {this, next } ∪ V,V is a set of variable names

Figure 3: Ptolemy’s syntax [19], with refining expressions
and contracts added

2.1.1 Declarations
We do not allow nesting of decls. A class has a name (c) and

names its superclass (d), and may declare fields (field) and meth-
ods (meth). Field declarations are written with a class name, giv-
ing the field’s type, followed by a field name. Method headers have
a C++ or Java-like syntax, although their body is an expression. A
binding declaration associates a set of events, described by an event
type (p), to a method (m) [19]. An example is shown in Figure 2,



which contains a binding on line 27. This binding declaration tells
Ptolemy to run method updatewhen events of type Changed are
announced. II terminology calls such methods handler methods.

An event type (event) declaration has a return type (t), a
name (p), zero or more context variable declarations (form), and
a translucid contract (contract). These context declarations specify
the types and names of reflective information exposed by conform-
ing events [19]. An example is given in Figure 2 on lines 10–18. In
writing examples of event types, as in Figure 2, we show each for-
mal parameter declaration (form) as terminated by a semicolon (;).
In examples showing the declarations of methods and bindings, we
use commas to separate each form.

2.1.2 Expressions
The formal definition of Ptolemy is given as an expression lan-

guage [19]. It includes several standard object-oriented (OO) ex-
pressions and also some expressions that are specific to announc-
ing events and registering handlers. The standard OO expressions
include object construction (new c()), variable dereference (var,
including this), field dereference (e.f ), null, cast (cast t e),
assignment to a field (e1.f = e2), a definition block (t var = e1;
e2), and sequencing (e1; e2). Their semantics and typing is fairly
standard [7, 19] and we encourage the reader to consult [19].

There are also three expressions pertinent to events: register,
announce, and invoke. The expression register(e) evalu-
ates e to an object o, registers o by putting it into the list of active
objects, and returns o. Only active objects in this list are capable
of advising events. For example line 20 of Figure 2 is a method
that, when called, will register the method’s receiver (this). The
expression announce p (ē) {e} declares the expression e as an
event of type p and runs any handler methods of registered objects
(i.e., those in the list of active objects) that are applicable to p [19].
The expression invoke(e) is similar to AspectJ’s proceed. It
evaluates e, which must denote an event closure, and runs that event
closure. This results in running the next handler method in the
chain of applicable handlers in the event closure. If there are no
remaining handler methods, it runs the original expression from
the event. The type thunk t ensures that the value of the corre-
sponding actual parameter is an event closure with return type t,
and hence t is the type returned by invoke(e).

When called in an event, or by invoke, each handler method
is called with a registered object as its receiver. The call passes an
event closure as the first actual argument to the handler (rest in
Figure 2 line 21). Event closures are never stored; they are only
constructed by the semantics and passed to the handler methods.

There is one additional program expression: refining. A refining
expression, of the form refining spec { e }, is used to imple-
ment Ptolemy’s translucid contracts (see below). It executes the
expression e, which is supposed to satisfy the contract spec.

2.2 Specification Features
The syntax for writing an event type’s contract in Ptolemy is

shown in Figure 4. In this figure, all non-terminals that are used
but not defined are the same as in Figure 3.

contract ::= requires sp assumes { se } ensures sp
spec ::= requires sp ensures sp
sp ::= n | var | sp.f | sp != null | sp == n | sp < n| ! sp

| sp == old(sp) | sp && sp
se ::= sp | spec | null | new c() | se.m( se ) | se.f | se.f = se| form = se; se

| if (sp) { se } else { se }| while (sp) { se } | cast c se | se; se
| register( se ) | invoke ( se ) | announce p ( se ) { se }
|refining spec { se } | next | either { se } or { se }

Figure 4: Syntax for writing translucid contracts

A contract is of the form requires sp1 assumes { se }
ensures sp2. Here, sp1 and sp2 are specification predicates as
defined in Figure 4 and the body of the contract se is an expression
that allows some extra specification-only constructs (such as the
choice construct either seT or seF ). In an event specification,
the predicate sp1 is the precondition for event announcement, and
sp2 is the postcondition of the event announcement. The specifica-
tion expression se is the abstract algorithm describing conforming
handler methods. The invoke expressions must be revealed in se
and the variables that could be named in se are only context vari-
ables. If a method runs when an event of type p is announced, then
its implementation must refine the contract se of the event type p.
For example, in Figure 2 the method update on lines 21–26 must
refine the contract of the event type Changed on lines 12–17.

There are four new expression forms that only appear in con-
tracts: specification expressions, next expressions, abstract in-
voke expressions, and choice expressions. A specification ex-
pression (spec) hides implementation details (i.e., algorithms) and
thus abstracts from a piece of code in a conforming implementa-
tion [22, 24]. The most general form of specification expression
is requires sp1 ensures sp2, where sp1 is a precondition
expression and sp2 is a postcondition. Such a specification ex-
pression hides program details by specifying that a correct imple-
mentation contains a refining expression whose body expres-
sion, when started in a state that satisfies sp1, will terminate in a
state that satisfies sp2 [22, 24]. In examples we use the following
syntactic sugars: preserves sp for requires sp ensures
sp, and establishes sp for requires 1 ensures sp [22].
Ptolemy uses 0 for “false” and non-zero numbers, such as 1, for
“true” in conditionals.

The next expression, the invoke expression and the choice
expression (either − or ) are placeholders in the specification
that express the event closure passed to a handler, the call of an
event handler using invoke, and a conditional expression in a
conforming handler method, respectively. The choice expression
hides the implementation details and thus abstracts from the con-
crete condition check in the handler method. For a choice expres-
sion either { se1 } or { se2 } a conforming handler may con-
tain an expression e1 that refines se1, or an expression e2 that re-
fines se2, or an expression if ( e0 ) { e1 } else { e2 }, where
e0 is a side-effect free expression, e1 refines se1, and e2 refines
se2. Choice expression allows variability in handlers’ behaviors
and enables their abstraction in the translucid contract.

3. VERIFICATION OF PROGRAMS WITH
TRANSLUCID CONTRACTS

Verifying Ptolemy programs is different from standard object-
oriented (OO) programs in two ways. First, a method in the pro-
gram under verification may announce events that can cause a set
of handlers to run. Second, if the method is a handler it may call
invoke that can also cause a set of handlers to run.

Therefore, verifying a Ptolemy program with translucid con-
tracts poses two novel technical problems, compared to verifying
standard OO programs: (1) verifying that each handler method cor-
rectly refines the contract of each event type it handles, and (2)
verifying code containing announce and invoke expressions.

A handler method is a method that is statically declared in a
binding form in its class to handle events of a given event type.
When a binding of the form when p do m appears in a class dec-
laration, then we say that m is a handler method for event type p;
an example handler method is update in Figure 2.

The main novelty of translucid contracts is that both of these



verification steps can be carried out modularly. By “modularly” we
mean that each task can be done using only the code in question,
the specifications of static types mentioned in the code, and the
specifications of the relevant event types. For a handler, the relevant
event types are all the event types that the method is a handler for
(as determined by the binding declarations in the class where the
handler is declared). For an announce expression, the relevant
event type is the one that is being announced. For an invoke
expression, which must occur inside a handler method body, it is
each event type that the method is a handler for.

3.1 Overview of Key Ideas in Verification
Informally, to verify that each handler method correctly refines

the contract of each event type that it handles, we first statically
check whether the structure of the handler method body matches
the structure of the assumes block of the event type. Note that
invoke expressions that can override the underlying event body’s
execution (join point in AO terms) can only appear inside the han-
dler method. So this check ensures that the control effects of the
handler method matches the control effects specified in the translu-
cid contract. At the same time, in our current implementation, we
insert runtime assertions that check that the pre- and postconditions
required by each event type’s contract are satisfied by the handler
method. These two checks ensure that starting with a state that sat-
isfies the event type’s precondition, if a correct handler method is
run, it can only terminate in a state that satisfies the event type’s
postcondition, while ensuring that it produces no more control ef-
fects than those mentioned in the event type’s assumes block.

Recall that an announce expression may cause a statically un-
known number of handler methods to run, potentially followed by
the event body. An invoke expression (proceed) works simi-
larly. To verify the code containing an announce expression, we
take advantage of the fact that each correct handler method refines
the event type’s contract. So the event type’s contract can be taken
as a sound specification of the behavior of each handler.

What is interesting and novel about our proposal is that the
assumes block for an event type’s translucid contract gives a
sound specification of the behavior of an arbitrary number of han-
dlers for that event.

Ignoring concrete details, imagine we need a sound specification
of the behavior of the two handlers Update and Logging for
the event type Changed in Figure 2. This can be constructed by
taking the assumes block of this event type’s contract and re-
placing occurrences of all invoke expressions inside it by the
same assumes block (we will discuss how to do this shortly).
This essentially achieves the effect of inlining the invoke ex-
pression (and is similar to unrolling a loop or inlining a recursive
call [8]). Notice that construction of this specification only requires
access to the event type. Also note that the resulting specification
may contain some invoke expressions (as a result of inlining the
assumes block). Let us call the constructed specification S.

Given the specification S of the behavior of the two handlers,
we can now (1) reason about the code containing an announce
expression as well as (2) the code containing an invoke expres-
sion. Again, ignoring concrete details, in the code containing the
announce expression we do have access to the event body. So
we replace all invoke expressions in S with this event body. As
a result, we now have a pure OO specification expression that is a
sound specification of this announcement of the event Changed,
Sann. This specification expression can be used to reason about
the code that contains announce expression. An important prop-
erty of this step is that we only used the event type’s contract and
the code that was announcing events.

To reason about code that contains invoke expression, once
again we start with a specification constructed from event type’s
contract, e.g., S. Note that the event body must refine the event
type pre- and postcondition (to avoid surprising handler methods).
So we replace all invoke expression in S with the pre- and post-
condition of the event type’s contract. This gives us a pure and
sound OO specification of running two handlers and a correct event
body, Sinv . Similarly, in this step as well, we only used the event
type’s contract and the code that contains invoke expression.

In the rest of this section, we describe these verification steps
starting with the handler refinement.

3.2 Checking Handler Refinement
For sound modular reasoning, all handlers must be correct. A

correct handler method in Ptolemy must refine the translucid con-
tract of each event type that the method handles. Checking refine-
ment of such a method is done in a two-step process. First, we
statically verify whether the handler method’s body, which is an
expression (e) is a structural refinement of the translucid contract
of the event type, which is a specification expression (se). This step
is performed as part of type-checking phase in Ptolemy’s compiler.
Second, we verify that handler method satisfies the pre- and post-
conditions of the event type specification. This is currently checked
at runtime (Section 3.4), however, a static approach, such as ex-
tended static checking [8], could also be applied.

Figure 5 shows the structural refinement process where refine-
ment is checked for each handler method binding. CT is a fixed
list of program’s declarations. Rule (CLASS TABLE REF) in Fig-
ure 5 checks structural refinement for each handler binding in
the program. Rule (CHECK BINDING REF) creates the typing con-
texts (π,Π) for the specification expression that is the body of the
translucid contract and the program expression that is the body of
the handler method and uses refinement rules in Figure 6 to check
their structural refinement. In structural refinement, specification
expressions in the contract are refined by (possibly different) pro-
gram expressions in an implementation; however, program expres-
sion in the contract are refined by textually identical program ex-
pressions in the implementation.

(CLASS TABLE REF)
∀c ∈ dom(CT ), ∀binding ∈ CT (c) CT ` binding in c

` CT

(CHECK BINDING REF)
decl = t event p {t1 var1 . . . tn varn contract}, decl ∈ CT,

contract = requires sp0 assumes {se} ensures sp1,
(t m(thunk t

′ var′0, t
′
1 var

′
1 . . . t

′
m var

′
m) {e}) ∈ CT (c),

π = {next : thunk t, var1 : t1, . . . , varn : tn},
Π = {this : c, var′0 : thunk t

′
, var

′
1 : t

′
1, . . . , var

′
m : tm},

(π,Π) ` se v e
CT ` (when p dom) in c

Figure 5: Rules for checking structural refinement

A specification expression is refined by a program expression
if its subexpressions are refined by corresponding subexpressions
of the concrete program expression. Figure 6 shows key rules for
checking that. Rules for standard OO expressions are omitted from
here, but can be found in our technical report [3]. There is no rule
for register as it is not allowed in an event type specification.
Judgement (π,Π) `se v e states that specification expression se
is refined by program expression e in the specification typing envi-
ronment π and program expression typing environment Π, which
in turn are constructed in the (CHECK BINDING REF) rule.



For specification expression se, program expression e,
specification and program typing contexts π and Π,
se is refined by e, (π,Π) `se v e, as follows:
Cases of Spec. Exp. (se) Refined By (e) Side Conditions
n n
var var′ if π(var) == Π(var′)
sp.f sp′.f if (π,Π) `sp v sp′
sp! = null sp′! = null if (π,Π) `sp v sp′
!sp !sp′ if (π,Π) `sp v sp′
sp1&&sp2 sp′1&&sp′2 if (π,Π) `sp1 v sp′1,

(π,Π) `sp2 v sp′2
sp == n sp′ == n if (π,Π) `sp v sp′
sp < n sp′ < n if (π,Π) `sp v sp′
se1; se2 e1; e2 if (π,Π) `se2 v e2,

(π,Π) `se2 v e2
if(sp){seT } if(ep){eT } if (π,Π) `sp v ep,
else{seF } else{eF } (π,Π) `seT v eT ,

(π,Π) `seF v eF
while(sp){se} while(ep){e} if (π,Π) `sp v ep,

(π,Π) `se v e
t var = se1; se2 t var = e1; e2 if (π,Π) `se1 v e1,

π′ = π∪−{var : (t, l)},
Π′ = Π∪−{var′ : (t, l)},
(π′,Π′) ` se2 v e2

refining spec{se} refining if (π,Π) `se v e
spec{e}

spec refining
spec{e}

invoke(se) invoke(e) if (π,Π) `se v e
announce p(se) announce p(ē) if (π,Π) `se v ē,
{se} {e} (π,Π) `se v e

either {seT } or {seF } if(ep){eT } if (π,Π) `seT v eT ,
else{eF } (π,Π) `seF v eF

either {seT } or {seF } eT if (π,Π) `seT v eT
either {seT } or {seF } eF if (π,Π) `seF v eF

Figure 6: Structural refinement relation ( v )

3.2.1 Example Handler Refinement
To illustrate the refinement rules in Figure 6, consider check-

ing whether the handler method update on lines 22–25 in Fig-
ure 2 refines the translucid contract’s body on lines 14–15. As
illustrated in Figure 7 and according to the rule for se1; se2 in
Figure 6, this refinement holds if (a) invoke(next) is refined
by invoke(rest) and (b) establishes fe==old(fe)
is refined by refining establishes fe==old(fe)
{Display.update(fe); fe}.

10 Fig event Changed{

..

12  requires fe != null

13 assumes{

14   invoke( next );

15   establishes fe==old(fe) 

16  } 

17  ensures fe != null

( next );( next );

21 Fig update(thunk Fig rest,Fig fe){

22  invoke( rest );

23 refining establishes fe==old(fe){

24 Display.update(fe); fe

25  } 

26 }

(fe){

} 

( rest );invoke( rest );

24

( next );( next ); 22  Refines

Figure 7: Handler refinement

For proving condition (a), we must check whether the subex-
pression next is refined by the subexpression rest. This can be
done by the rule for var, which states that both variables next
and rest must be given the same type by their respective typing
contexts (π and Π). The specification typing context π in this case,
gives type thunk Fig to next, which is the same as the type
for rest given by the program typing context Π. By applying the

rule for spec in Figure 6, we can prove (b) because specification
predicates refining establishes fe==old(fe) are the
same in both specification expression and the program expression.
Thus, the handler method update correctly refines the translucid
contract for the event type Changed.

The refinement rule for the case spec deserves further explana-
tion. It states that a specification expression spec is refined by an
expression refining spec {e}, which claims to refine the same
specification spec. The claim that e satisfies spec is discharged
using runtime assertion checking as discussed in Section 3.4.

3.3 Verifying Ptolemy Programs
The main difficulty in verifying Ptolemy programs is that

announce and invoke expressions could cause a statically un-
known set of handlers (advice) to run. This set is not known stat-
ically unless a whole program analysis is performed. Thus such
knowledge is not part of modular verification. Despite this, translu-
cid contracts make modular verification possible. The challenge
is to verify the code containing announce and invoke expres-
sions. The basic idea is to use the translucid contract of the event
type in place of each handler as discussed in Section 3.1. There
are two types of methods to verify, regular methods which might
announce event and handler method which handle the events.

3.3.1 Verification of Regular Methods
To statically verify a non-handler method t m (t̄ var){e} we

must replace any occurrence of announce expression in its body e
with a simulating expression for verification. The translation func-
tion Tr given in Figure 8 shows how to do that. Basically, a trans-
lation function Tr(se, be, p) inlines event type specification/event
body in place of announce/invoke expressions in se, as informally
discussed in Section 3.1, to compute a simulating specification ex-
pression, modeling event announcement. Event p is the announced
event, if any, and be is the event body. Function Tr is discussed in
greater detail in Section 3.3.3.

For the method m above with the body of e, we compute
Tr(e,skip,⊥). The arguments skip and ⊥ specify that this
method does not handle any events (⊥) and thus there is no event
body (skip) which basically means the method is a non-handler.
These parameters are included in this case simply to facilitate uni-
form application of the Tr function for both regular (non-handler)
and handler methods. skip is sugar for while 0 { 0 }.

The result of Tr(e,skip,⊥) is a specification expression with
no Ptolemy-specific features, but may have extra expressions which
simulate event announcement and running of handlers. This ex-
pression can then be used to perform standard weakest precondition
based verification for OO programs.

3.3.2 Verification of Handler Methods
To statically verify a handler method h of the form

t h (thunk t0 var0, t̄ var) {e}, for each event type pwith a bind-
ing when p do h, one does the following. Let the contract for p
be requires spp assumes {sep} ensures sp′p, then com-
pute Tr(e,requires spp ensures sp′p, p) and use the result
to verify the handler h. The second argument to Tr is a specifi-
cation statement consisting of the event’s pre- and postconditions;
this is used in the place of the announced event’s body, since the
event body is not available during static verification of the handler,
and since this specification statement must be refined by all event
bodies. The result of Tr(e,requires spp ensures sp′p, p) is
a pure OO specification expression.



For specification expressions se, expressions be, event types p,
where p has contract requires spp assumes {sep} ensures sp′p
and context variables t var,
Tr(se, be , p) =

Cases of se Result Side Condtions
n, var , null,
new c(), next ,
spec

se

old (se1) old (se2) if se2 = Tr(se1 , be , p)
se1.f se2.f if se2 = Tr(se1 , be , p)
either {se0}
or {se1}

either {se′0} or {se
′
1} if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
se.m(se) se′.m(se′) if se′ = Tr(se, be , p),

se′ = Tr(se, be , p)
se0.f = se1 se′0.f = se′1 if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
if(ep){se0}
else{se1}

if(ep′){se′0}else{se
′
1} if ep′ = Tr(ep, be , p),

se′0 = Tr(se0 , be , p),
se′1 = Tr(se1 , be , p)

while(ep){se} while(ep′){se′0} if ep′ = Tr(ep, be , p),
se′ = Tr(se, be , p)

cast c se cast c se′ if se′ = Tr(se, be , p)
se0; se1 se′0; se′1 if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
t var =
se0; se1

t var = se′0; se′1 if se′0 = Tr(se0 , be , p),
se′1 = Tr(se1 , be , p)

refining spec
{se1}

spec

register(se1) se2 if se2 = Tr(se1 , be , p)
invoke(se1) refining spec{

either {se2; be}
or {se2; se3}
}

if se2 = Tr(se1 , be , p),
se3 = Tr(sep , be , p),
spec = requires spp

ensures sp′p
announce p′

(se) {se1}
refining spec{
either {se′; se′1}
or {t′ var′ = se′ ; se′2}
}

if p′ has translucid contract
requires spp′
assumes {sep′}

ensures sp′
p′ and

context variables t′ var′,
se′ = Tr(se, be , p),
se′1 = Tr(se1 , be , p

′),
se′2 = Tr(sep′ , se

′
1 , p

′),
spec = requires spp′

ensures sp′
p′

Figure 8: Translation algorithm. This is the algorithm for con-
verting program expressions into specification expressions that
simulate running of handlers.

3.3.3 Translation Function
As illustrated in Section 3.1, the translation function

Tr(se, be, p), with p as the announced event and be as the body
of p, inlines event type specification or event body in the place of
announce and invoke expressions in se, and computes a simulating
specification of the event announcement. Announce and invoke ex-
pressions are replaced by the event type’s contract if there are more
applicable handlers and are replaced by the event body otherwise.
As existence or non-existence of more applicable handlers is not
decidable statically, the translation algorithm considers occurrence
of both of these situations simultaneously using an either −or
choice expression, as shown in Figure 8.

Most cases in the translation function Tr are straightforward
as they just recursively apply Tr to their subexpressions and
compose the results. Translations of refining, announce and in-
voke expressions are of more interest, though. Translation of
refining spec {e} is spec as the runtime assertion checking
ensures that e refines the spec. The cases for invoke and announce

expressions are central as they model event announcement by sim-
ulating running of the handlers and the event body.

Translations of invoke and announce expressions, both produce
an either − or choice expression guarded by a refining
expression. The either-branch simulates the situation when there
is no applicable handler whereas the or-branch takes care of the
situation when there exist more handlers to run.

In the translation of invoke (se1), the either-branch contains a
sequence of two expressions: translation of the argument se1 and
the event body be, which means no more handler to run. The or-
branch contains a sequence of two expressions too: translation of
argument se1 and translation of the translucid contract sep. The
guarding refining expression assures that specification spec is sat-
isfied by the choice expression inside. spec contains pre- and post-
condition of the contract sep.

Translation of announce expression is similar to the invoke. In
case of announce p′ (se) {se1}, the either-branch contains a se-
quence of two expressions: translation of the argument se and the
translation of event body se1. In or-branch the first expression is
the translation of the arguments and their assignment them to con-
text variables var′ . The second expression is the translation of the
translucid contract of event p′, i.e. sep′ , assuming that the event
body is se′1, the translation of se1. The translation of sep′ simu-
lates running of handlers for event p′ with a concrete event body
and event type’s translucid contract as an abstraction for handlers.

The translation function assumes an acyclic event announce/han-
dle relation. Circular relations could simply be detected statically.

3.3.4 Illustration of the Verification Algorithms
To illustrate, consider verifying the method setX in Figure 1

with the translucid contract in Figure 2. The body of this method
is the announce expression announce Changed(this){
this.x = x; this}. To verify this method, we first apply
the translation function Tr(se,skip,⊥) with se = announce
Changed(this){this.x = x;this} as this method is a non-
handler regular method. The case for announce expression in Fig-
ure 8 is applicable, which results in the specification expression
shown in Figure 9.

1 refining requires fe != null ensures fe!= null{

2 either { this ; this.x = x; this } 

3 or { Fig fe = this ; 

4      Tr(invoke(next); establishes fe==old(fe), 

5         this.x = x; this, Changed) } 

6 }

Tr

5         

Translation function

(fe), 

5         = x; , Changed) } 

Figure 9: Translation of method setX

Notice the use of the translation function Tr on lines 4–5. To
verify this expression both the either-branch and the or-branch must
be verified. During the verification, upon reaching the translation
function, it is unrolled one more time resulting in the specification
expression shown in Figure 10.

During this application, the cases for sequence, spec and invoke
expressions are used, which again results in an embedded trans-
lation function Tr on lines 6–7. The astute readers may have
observed that we have essentially reduced problem of verifying
announce and invoke expressions to a problem similar to rea-
soning about loops. Thus, standard techniques for reasoning about



1 refining requires fe!= null ensures fe!= null{

2 either { this ; this.x = x; this } 

3 or { Fig fe = this ; 

4      refining requires fe!= null ensures fe!= null{

5       either { next; this.x = x; this }

6       or { next; Tr(invoke(next); establishes fe==old(fe),

7                     this.x = x; this, Changed) }

8      }

9     establishes fe == old(fe) }

10 }

6       

7                     

}

establishes

Unrolling translation function

5       

6       

7                     

6       

Figure 10: Unrolling translation function

loops, such as proof rules that rely on user-supplied invariants,
could be applied here. Heuristics like the one used in ESC/Java [8]
to unroll the loops are also applicable here. When the verifier de-
cides to terminate recursive unrolling, based on any of the above-
mentioned approaches, the translation function in the result expres-
sion is just ignored. Verification of the method update is similar.

3.3.5 Soundness
To prove the soundness of our verification and reasoning ap-

proach, we have proved the translation algorithm sound, i.e., the
specification expression (produced by the translation algorithm
which simulates event announcement) and used for verification is
refined by the program expression obtained after recursive replace-
ment of event announcements by concrete handler method bodies.
More details are presented in our companion technical report [3].

3.4 Runtime Assertion Checking (RAC)
As previously mentioned, some of the verification obligations

encountered during the verification are discharged by relying on
runtime assertions. Runtime checking discharges the following
obligations, verifying that: (1) each handler method satisfies the
specification of the event types it handles (2) each event body sat-
isfies the pre- and postconditions of its event type specification,
(3) each refining expression body refines the specification it
claims to refine, and (4) each event announcement and consequent
execution of all of its handler methods combined behavior, satisfies
pre- and postconditions of the event type, regardless of the number
of the handlers and their order of execution. Alternatively, a static
checker like ESC/Java [8] could discharge these assumptions.

We have implemented runtime assertion checking in the Ptolemy
compiler [18]. Figure 11 illustrates insertion of runtime probes by
the Ptolemy compiler in the generated code. An abstraction func-
tion matches up context variable fe to its corresponding variables
in the scopes of subject Point and handler Update.

To meet obligation (1) pre- and postcondition probes are inserted
at the beginning and end of handler method body, before line 21 and
after line 26. Runtime probes right before and after line 6 guarantee
obligation (2). To verify that the refining expression on lines 23-
25 refines the specification it claims to refine, obligation (3), run-
time assertions are inserted before line 23 and after line 25. Finally
to assure obligation (4) that event announcement and execution of
handler methods does not violate the event type pre- and postcon-
ditions, runtime checks are enforced before and after announce
and invoke expressions in the code. Runtime probes before line
5 and after line 7 guarantee the obligation for announce expression
whereas probes right before and after line 22 meet the obligations
for invoke expressions.

4. ANALYSIS OF EXPRESSIVENESS
To analyze the expressiveness of translucid contracts, in this sec-

tion we illustrate their application to specify base-aspect interac-
tion patterns discussed by Rinard et al. [23]. Rinard et al. classify
base-advice interaction patterns into: direct and indirect interfer-
ence. Direct interference is concerned about control flow interac-
tions whereas indirect interference refers to data flow interactions.
Direct interference is concerned about calls to invoke, which is
the Ptolemy’s equivalent of AspectJ’s proceed. Direct interfer-
ence is further categorized into 4 classes of: augmentation, nar-
rowing, replacement and combination advice which call invoke
exactly once, at most once, zero and any number of times, respec-
tively. An example, built upon the drawing editor example in Sec-
tion 1, is shown for each category of the direct interference.

4.1 Direct Interference: Augmentation
Informally an augmentation handler evaluates invoke expres-

sion exactly once. An augmentation handler can be a before or af-
ter handler. After-augmentation handler is executed after the event
body whereas in the before augmentation the order is opposite.

1 Fig event Changed{

2  Fig fe;

3  requires fe != null

4  assumes{

5   invoke(next);

6   establishes fe==old(fe) 

7  }

8  ensures fe != null

9 }

invoke

establishes

ensures

Exactly one invoke

{

establishes fe==establishes

Figure 12: Specifying augmentation with a translucid contract

To illustrate consider the translucid contract in Figure 12 on lines
3–8. Translucid contracts are required to reveal all appearances of
the invoke expression, thus it is assured that all refining handlers
will evaluate invoke expression exactly once.

Furthermore, invoke is called at the beginning of the contract,
requiring event handlers to run after the event body which means
not only the refining handlers are augmentation handlers, but also
that they run after the event body, after-augmentation handlers.

Method log in class Logging in Figure 13 is an example of
a conforming after-augmentation handler. The requirement for this
method is “to log the changes when figures are changed”. The han-
dler log causes the event body to be run first by calling invoke
on line 12 and then logs the changes in the figure on line 14. The
classes Point and Fig are the same as in Figure 1.

10 class Logging{

11  Fig log(thunk Fig rest, Fig fe){

12   invoke(rest);

13   refining establishes fe==old(fe){

14  Log.logChanges(fe); fe

15   }

16  }

17  when Changed do log;

18 }

Figure 13: After-augmentation handler

Structural similarity requires the handler implementation to eval-
uate invoke exactly once and at its very beginning which in turn



10 Fig event Changed {

…

12  requires fe != null

13  assumes{

14   invoke(next);

15   establishes fe == old(fe) 

16  }

17  ensures fe != null

…

20 class Update {

…

//@ requires rest.fe != null;

21  Fig update(thunk Fig rest, Fig fe){

//@ requires rest.fe != null;

22   invoke(rest);

//@ ensures  rest.fe != null; 

//@ requires true;

23   refining establishes fe==old(fe){

24    Display.update(fe); fe 

25   } 

//@ ensures  rest.fe==old(rest.fe);

26    }

//@ ensures  rest.fe != null;

28  }
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2 class Point extends Fig {

…

4  Fig setX(int x){

//@ requires this != null;

5   announce Changed(this){

//@ requires this != null; 

6    this.x = x; this

//@ ensures this != null; 

7   }

//@ ensures  this  != null;

9  }

P
r
e

P
r
e

th

////////////////////////

6     th
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7 }

//////////////////////

7 
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o
s
t

Figure 11: Runtime assertion checking (RAC). Gray lines show pseudo code corresponding to generated code by the compiler.

ensures that the handlers is an “after-augmentation” handler. The
handler refines the contract because line 12 matches line 5 and the
refining expression on lines 13–15 refines the same specification as
on line 6.

4.2 Direct Interference: Narrowing
A narrowing handler evaluates invoke at most once, which im-

plies existence of a conditional statement guarding invoke.

1 Fig event Changed{

2  Fig fe;

3  requires fe != null

4  assumes{

5   if(fe.fixed == 0)

6 invoke(next)

7   else

8 establishes fe==old(fe) 

9  }

10  ensures fe != null

11 }

7   

ensures

At most one invoke

(fe) 

Figure 14: Specifying narrowing with a translucid contract

To illustrate consider the translucid contract in Figure 14 on lines
5–8 which specifies narrowing handlers. The contract reveals ap-
pearances of invoke expression and the if expression guarding
that which in turn ensures that invoke expression is evaluated at
most once. It does not, however, reveal the actual code that must
refine the specification on line 8. All the refining handlers will have
the same structure in their implementation with regard to invoke
and if expressions, which makes them narrowing handlers.

Figure 15 illustrates a narrowing handler refining the contract
shown in Figure 14. The handler implements an additional require-
ment for the figure editor example that “some figures are fixed and
thus they may not be changed or moved”. To implement the con-
straint the field fixed is added to the class Fig, line 23. For fixed
figures the value of this field is 1 and 0 otherwise. The class Point

is the same as in Figure 1. To implement the constraint the handler
check skips invoking the base code whenever the figure is fixed
(checked by accessing the field fixed).

12 class Enforce{

13  Fig check(thunk Fig rest, Fig fe){

14   if(fe.fixed == 0) 

15    invoke(rest)

16   else

17    refining establishes fe==old(fe){

18     fe

19    }

20  }

21  when Changed do check;

22 }

23 class Fig { int fixed; }

Figure 15: Narrowing handler

For the handler check to refine the contract in the event type
Changed, its implementation must structurally match the contract.
The true block of the if expression on line 14–15 refines the true
block of the if on lines 5–6 as they textually match. The false
block of the if on line 16–19 refines the false block of the if on
lines 7–8 because lines 17–19 claim to refine the specification on
line 8. This claim is discharged by runtime assertions.

4.3 Direct Interference: Replacement
A replacement handler omits the execution of the original event

body and runs the handler body instead. In Ptolemy this can be
achieved by omitting the invoke expression in the handler.

Figure 16 shows the contract in event type Moved specifying
replacement handlers by not evaluating any invoke expression
in the contract, line 6. Notice that (non) existence of an invoke
expression in the contract requires the handler implementation to
(not) evaluate the invoke in its body.

Figure 17 shows a replacement handler refining the contract in
Figure 16. The example uses several standard sugars such as +=



1 Fig event Moved{

2  Point p;

3  int d;

4  requires p != null && d > 0

5  assumes{

6   preserves p != null && p.y == old(p.y)

7  }

8  ensures p != null

9 }

6   preserves 

ensures

No invoke

Figure 16: Specifying replacement with a translucid contract

10 class Scale{

11  int s;

12 Fig scaleit(thunk Fig rest, Point p, int d){

13 refining preserves p!=null && p.y==old(p.y){ 

14      p.x += s*d; p

15   }

16  }

17  when Moved do scaleit;

18 }

19 class Point extends Fig{

20 int x, int y; 

21 Fig moveX(int d){

22 announce Moved(this, d){

23 this.x += d; this

24 }

25 }

26 }

Figure 17: Replacement handler

and >. In this example, the method moveX causes a point to move
along the x-axis by amount d. The handler scaleit implements
the requirement that the “amount of movement should be scaled by
a scaling factor s, defined in class Scale”.

If an contract has no invoke expression, none of the refining
handlers are allowed to have an invoke in their implementation.
Otherwise the structural similarity criterion of the refinement is vi-
olated. The handler scaleit refines Moved’s contract because
its body on lines 13–15 matches the specification on line 6.

4.4 Direct Interference: Combination
A Combination handler, typically useful for fault tolerance, can

functionalities, can evaluate invoke expression any number of
times. Figure 18 illustrates a combination contract and a handler.
The translucid contract in the event type specification on lines 5–11
allows an invoke expression to be evaluated zero or more num-
ber of times. This is achieved by guarding the invoke expression
by while. Based on the contract specially looking at the while
loop surrounding invoke, the base code developer can conclude that
handler methods for event ClChange may run the original event
body multiple times. The developer, however, is not aware of the
concrete details of handlers, thus those details remain hidden.

A combination handler is illustrated in Figure 18 lines 15–
34. In this example, colors are added to the figures elements by
adding a field color to the class Fig and by providing a method
setColor for picking the color of the figure, lines 35–43. The
class Color which provides a method nextCol to get the next
available color is not shown.

To implement the requirement that “each figure should have a
unique color”, event type ClChange is declared as an abstraction

1 Color event ClChanged{

2  Fig fe;

3  requires fe != null

4  assumes{

5   while(fe.colFix==0){

6    invoke(next);

7    either

8     preserves fe != null

9    or

10     preserves fe.colFix==0

11   }

12  }

13  ensures fe != null

14 }

6    

either

or

preserves 

ensures

Zero or more invokes

while

6    ( );6    

either

8     preserves 8     

or

preserves preserves 

15 class Unique{

16  HashMap colors;

17  Color check(thunk Color rest,

18     Fig fe){ 

19   while(fe.colFix == 0){

20    invoke(rest);

21   if(colors.get(fe.c) != null)

22    refining preserves fe!=null{

23     colors.put(fe.c);

24     fe.colFix = 1;

25     fe.c

26   }

27   else

28     refining preserves fe.colFix==0{

29      fe.c

30     }

31   }

32  }

33  when ClChange do check;

34 }

20    invoke(rest);

19   

20    20    
Refines

if

23     

24     

25     

}

21   

22    

else

28     fe.colFix==0{

29      

30     

28     28     

35 class Fig{

36 Color c; 

37  int colFix = 0;

38  Color setColor(){  

39   announce ClChange(this){  

40    this.c = c.nextCol()

41   }

42  }

43 }

Figure 18: Combination contract and handler

of events representing colors changes. The method setColor
changes colors so it announces the event ClChange on lines 39–
41. The body of the announce expression contains the code to ob-
tain the next color on line 40. The handler Unique on lines 15–34
implements this requirement by storing already-used colors in a
hash table (colors). The field colFix is added to class Fig to
show that a unique color has been chosen and fixed for the figure.
When the handler method check is run it checks colFix to see
if a color has been chosen yet or not. If not then it invokes the
event body generating the next candidate color. If the color is al-
ready used, checked by looking it up in the hash table, event body
is invoked again to generate the next candidate color. Otherwise,
the current color is inserted into the hash table and colFix is set
to 1, lines 21–26.

The specification for ClChange on lines 4–12 says that a com-
bination handler will be run when this event is announced. The
specification makes use of the choice feature, on line 7–10. To
correctly refine the specification, based on the refinement rules in
Figure 6, a handler can either have a refining if expression at the
corresponding place in its body or it can have an unconditional ex-
pression refining the either-block or the or-branch in the specifica-
tion. Refinement between specification and implementation blocks
is illustrated in the figure.

4.5 More Expressive Control Flow Properties
Rinard et al.’s control flow properties are only concerned about

calls to invoke. Their proposed technique decides which class of
interference and category of control effects each isolated advice be-
longs to [23]. However, it can not be used to analyze the possibility
of two or more control flow paths each of which being, e.g. an aug-
mentation, if each path maintains a different invariant. Figure 19
illustrates such a scenario with an example adapted from [13].

In this example the requirement is “a point should be visibly dis-
tinguished from the origin” [13]. If the point is close enough to the
origin, its coordinates will be scaled up by a scaling factor s added
to Point on line 29, initially set to 1, line 32. The scaling factor s
has only two values: 1 and 10. The requirement is implemented in
the handler method scaleit which runs whenever event Moved



1 Fig event Moved{

2  Point p;

3  requires p != null

4  assumes{

5   invoke(next);

6   if(p.x<5 && p.y<5)

7    establishes p.s==10

8   else

9    establishes p.s==1

10  }

11  ensures p != null

12 }

6   

7    

8   

9    

13 class Scaling{

14 Fig scaleit(thunk Fig rest, 

15 Point p){

16 invoke(rest);

17 if(p.x<5 && p.y<5)

18 refining establishes p.s==10{

19 p.s = 10; p

20    }

21   else

22    refining establishes p.s==1{

23 p.s = 1; p

24    }

25  }

26  when Moved do scaleit;

27 }

28 class Point{

29  int x, int y, int s; 

30  Point init(int x, int y){ 

31   this.x = x; this.y = y;

32   this.s = 1; this

33  }

34  int getX(){x*s}

35  int getY(){y*s}

36  Fig move(int x, int y){

37 announce Moved(this){ 

38    this.x = x; this.y = y; this

39   }

40  }

41 }

if

p.s==10{

20    

22    

24    }

19

20    20    
Refines

Figure 19: Expressive control flow properties beyond [23]

is announced and sets up the scaling factor to 10 if the point is close
enough to the origin (vicinity condition). The vicinity condition is
true if the point’s x and y coordinates are both less than 5. The
class Fig is the same as in Figure 1.

The assertions to be validated here are as follows: (i) all of the
handlers are after-augmentation ones, (ii) the scaling factor s is
either 1 or 10, and (iii) sis set to 10 if and only if the vicinity
condition holds. Rinard et al.’s proposal could only be used to
verify (i) and a behavioral contract could specify (ii) but none of
them could specify (iii). However translucid contracts can. On
lines 6–9 there is a specification that conveys to the developer of
the class Point that a conforming handler method will satisfy all
three of the above-mentioned assertions.

In summary, in this section we show that translucid contracts
enable specification of control flow interference between a subject
and its observers and allow automatic enforcement of specified in-
terference patterns via structural refinement. Translucid contracts
are expressive enough to specify and enforce control interference
properties proposed by Rinard et al. and even the more sophisti-
cated ones which could not be specified by previous works on the
design by contract for aspects.

5. RELATED IDEAS
There is a rich and extensive body of ideas that are related to

ours. Here, we discuss those that are closely related under three
categories: contracts for aspects, proposals for modular reasoning,
and verification approaches based on grey box specification.

5.1 Contracts for Aspects
This work is closest in the spirit to the work on crosscutting pro-

gramming interfaces (XPIs) [27]. XPIs also allow contracts to be
written as part of the interfaces as provides and requires
clauses. Similar to translucid contracts, the provides clause es-
tablishes a contract on the code that announces events, whereas the
requires clauses specifies obligations of the code that handles

events. However, the contracts specified by these works are mostly
informal behavioral contracts and thus are not easily checked auto-
matically. Furthermore, these works do not describe a verification
technique and contracts could be bypassed.

Skotiniotis and Lorenz [25] propose contracts for both objects
and aspects in their tool Cona. Cona’s contracts are black box, and
thus do not reveal any information about control flow effects.

Similarly, Pipa is a behavioral specification language for As-
pectJ [30]. Pipa supports specification inheritance and specification
crosscutting. It relies on textual copying of specifications for spec-
ification inheritance and syntactical weaving of specification for
specification crosscutting. AspectJ program annotated with JML-
like Pipa’s specifications could be transformed into JML and Java
code. JML-based verification tools could enforce specified behav-
ioral constraints. All of these ideas use black box contracts and
thus may not be used to reason about control effects of advice.

5.2 Modular Reasoning
There is a large body of work on modular reasoning about AO

programs on language designs [1, 7, 10], design methods [14, 27],
and verification techniques [11, 15]. Our work complements ideas
in the first and the second categories and can use ideas in the third
category for improved expressiveness. Compared to work on rea-
soning about implicit invocation [4,9], our approach based on struc-
tural refinement is significantly lightweight. Furthermore, it ac-
counts for quantification that these ideas do not.

Oliveira et al. [17] introduce a non-oblivious core language with
explicit advice points and explicit advice composition requiring ef-
fects modeled as monads to be part of the component interfaces.
Their statically typed model could enforce control and data flow in-
terference properties. Their work shares commonalities with ours
in terms of explicit interfaces having more expressive contracts to
state and enforce the behavior of interactions. However, it is diffi-
cult to adapt their ideas built upon their non-AO core language, to
II, AO, and Ptolemy as they do not support quantification.

Hoffman and Eugster’s explicit join points [10] and Steimann
et al.’s join point types [26] share similar spirit with Rajan and
Leavan’s event types [19]. Although Steimann et al. proposed in-
formal behavioral specification, their work has no explicit notion
of formally expressed and enforced contracts, or stating interaction
behavior, nor do any of these other approaches.

The work of Khatchadourian et al. [12] is closely related in that
it addresses both specification and modular verification of AO pro-
grams. They use a rely-guarantee approach to specification and
verification. Black box behavioral specifications are attached to
PCDs in pointcut interfaces, in a way similar to our work. The
assumes part of a translucid contract plays a role similar to the
rely conditions in their specifications, since it specifies the possible
state transformations that advice may implement. Structural refine-
ment in our approach plays a role similar to the guarantee part of
their specification, since it also limits what the advice (or handler)
can do. The main difference is that they use “join point traces”
to reason about control effects, which adds an extra burden on the
specifier and verifier compared to our grey box approach, which al-
lows more traditional reasoning about control effects in terms of the
underlying programming language’s control flow. Their approach
is based on black box behavioral specification.

5.3 Grey Box Specification and Verification
This work builds upon previous research on grey box specifi-

cation and verification [6]. Among others, Barnett and Schulte
have used grey box specifications written in AsmL [5] for veri-
fying contracts for .NET, Wasserman and Blum [29] also use a



restricted form of grey box specifications for verification, Tyler
and Soundarajan [28] and most recently Shaner et al. [24] have
used grey box specifications for verification of methods that make
mandatory calls to other dynamically-dispatched methods. Rajan et
al. have used grey box specification to enable expressive assertions
about web-services [22]. Compared to these ideas, our work is the
first to consider grey box specification as a mechanism to enable
modular reasoning about code that announces events and handles
events, which is a common idiom of AO and II languages.

6. CONCLUSION AND FUTURE WORK
This paper has shown how to modularly specify and verify

Ptolemy programs that use dynamically announced events and han-
dlers, which is similar to AspectJ’s pointcuts and dynamic advice.
There are several key ideas involved in our solution.

First, Ptolemy [19] provides a notion of event type declarations.
Event announcement names an event type, and so code announc-
ing an event can use the translucid contracts given in the event type
declaration. Similarly, handlers are statically bound to event types
in binding declarations, and this allows binding verification to also
modularly refer to the event type’s translucid contract. As the inter-
face between event announcements and handlers, event type decla-
rations are thus a good place to write translucid contracts. We also
demonstrate the applicability of our techniques to other type of AO
interfaces [1, 10, 14, 26, 27] in our technical report [3].

Second, Ptolemy’s explicit announcement solves the problem of
frequent join point shadows, since one only has to deal with han-
dlers where events are explicitly announced.

Finally, and most importantly, using grey box specifications as
part of our translucid contracts, and using structural refinement in
verification solves the problem of reasoning about control effects
of handlers. In essence, the grey box specification exposes all the
interesting control effects of handlers and structural refinement en-
sures that correct handler implementations are limited to the speci-
fied control effects. We argued that black box behavioral contracts
are insufficient for reasoning about such control flow effects, but
showed how our translucid specifications were adequate to spec-
ify a wide variety of such control effects.We have added translucid
contracts to a Ptolemy compiler that verifies handler refinement and
inserts runtime assertion checking code [18].

Adding translucid contracts to other AO compilers, integrating
our ideas with the rich specification features of JML, and working
out larger examples to find out more of the practical use cases of
translucid contracts are some directions for future work. Another
direction is to use translucid contracts to reason about data effects
of subject-observer interaction patterns.
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