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ABSTRACT 
As of today, it is unclear whether aspect-oriented modeling can 
benefit the model-driven development of software product lines. 
Although some preliminary studies exist at the requirements and 
implementation level that investigate the interaction of 
crosscutting behaviors and product-line variabilities, to the best of 
our knowledge these interactions at the modeling level are not yet 
investigated. The contribution of this work is a preliminary study 
of the object-oriented and aspect-oriented approaches for handling 
crosscutting variabilities. This study helps us identify desired 
characteristics of aspect-oriented modeling techniques for product 
lines. A pacemaker product line, extracted from the real industry 
case, serves as a running example to illustrate our findings. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – Representation. 

General Terms 
Design, Standardization. 

Keywords 
Model-Driven Development, Software Product Lines, Variability, 
Aspect, Aspect-Oriented Modeling. 

1. INTRODUCTION 
Model-driven development (MDD) [29], [30], [37] has played a 
very important role in software product-line engineering [18], 
[20], [26]. The executable models help exemplify the 
requirements, detect design flaws, validate the effects of 
variability management and help future maintenance [31]. 
However, the variability realization techniques in this area are 
geared toward local variabilities [7], [18]. We define crosscutting 
variabilities as those whose realizations are “fragmented across a 
system” [36]. We define local variabilities as those that can be 
captured in a modularized, object-oriented software artifact (e.g., 
a use case, an architectural block, a class, etc.) in the dominant 
decomposition. The lack of designated mechanisms for handling 
crosscutting variabilities in the product-line modeling level has 
hindered the sufficient support of all types of variabilities in 
MDD and created a void in validating design decisions regarding 
them.  
Aspect-Oriented Software Development (AOSD) [15], [21], [23] 
has emerged as a promising solution for handling crosscutting 
concerns [47] in all phases of the software development lifecycle. 
Several approaches [5], [24], [25] have already extended AOSD 
into product-line requirements and implementation. Thus, it is 

natural to seek to combine Aspect-Oriented approaches with 
MDD in software product line practice.  
This paper conducts a preliminary study of the Object-Oriented 
(OO) and Aspect-Oriented (AO) approaches in handling 
crosscutting, behavioral variabilities. A pacemaker product line, 
extracted from a real industry case, is used to illustrate our 
findings. For example, we observe that in this product line the AO 
approach handles variabilities that have a common mechanism but 
differ in locations better than the OO approach, if an automatic 
weaving mechanism is provided. However, the AO approach does 
not necessarily support more variability than the OO approach.  
The rest of this paper is organized as follows. Section 2 presents 
needed background information. Section 3 introduces the running 
example (a pacemaker product line) and reports experience in 
modeling the crosscutting behavior using OO and AO techniques. 
Section 4 discusses our observations to some open problems 
found during the case study. Section 5 provides related work. 
Finally, Section 6 concludes and describes future work. 

2. BACKGROUND  
Model Driven Development (MDD) [29], [30], [37] is a software 
development approach that uses diagrams to communicate and 
uses models to understand and validate the designs, as well as to 
help software implementation, deployment and maintenance. It 
often uses the Object-Oriented paradigm [28] to abstract the 
system functionality into models. 
A software product line is a set of software systems developed by 
a single company that share a common set of core requirements 
yet differ amongst each other according to a set of allowable 
variations [12], [49]. The product-line engineering concept is 
advantageous in that it exploits the potential for reusability in the 
analysis and development of the core and variable requirements in 
each member of the product line. Variability is the part of the 
software artifact that makes a product line member differ from 
others [49]. Four main approaches used to model variability in 
product lines are [48]: parameterization, information hiding, 
inheritance, and variation points. These approaches can be readily 
integrated with component engineering [34] and MDD [18]. 
However, none of them is designed to address those variabilities 
that crosscut multiple software artifacts. (See Sect. 3 for an 
example.) 
AOSD [15], [21], [23] is emerging as a way to complement the 
traditional Object-Oriented Software Development by 
modularizing crosscutting concerns in a new software artifact 
called an aspect [23]. The places where an aspect crosscuts a 
software system are called join points [23].  



Existing work in this area has covered a broad spectrum of the 
software development processes for single systems, from 
requirements analysis [8], [11], [25], [32], [38], architectural 
design [22], [40], modeling [1], [6], [45], coding [5], [24], and 
testing [50], [51]. Because of its ability in handling crosscutting 
concerns, AOSD is a natural candidate to manage crosscutting 
variabilities in a product line setting. 

3. CASE STUDY  
In this section we first present the running example, then give 
some concrete crosscutting variabilities and describe the modeling 
process using the OO and the AO approaches. Some findings are 
provided at the end. 

3.1 Pacemaker Product Line 
We use a pacemaker product line to evaluate different techniques 
for modeling crosscutting variabilities. These are real-time, 
embedded, and safety critical systems, that have been successfully 
developed in industry using MDD and software product line 
practices [26]. Studying the modeling techniques used for its 
variabilities can not only help enhance the safety assurance level 
of such systems, but may also yield observations that raise our 
confidence in other similar systems. 
A pacemaker is an embedded medical device designed to monitor 
and regulate the beating of the heart when it is not beating at a 
normal rate. It consists of a monitoring device embedded in the 
chest area as well as a set of pacing leads (wires) from the 
monitoring device into the chambers of the heart [14]. In our 
simplified example, the monitoring device has three basic parts: a 
sensing part (sensor) that senses heart beat, a stimulation part 
(pulse generator) that generates pulses to the heart, and a 
controlling part (controller) that configures different pacing and 
sensing algorithms and issues commands.  
In this example, we only consider a single-chambered product 
line of pacemakers that does pacing and sensing in the heart's 
ventricles. More advanced pacemakers can be dual-chamber, and 
the pacing or sensing algorithms applied to each chamber can be 
different although highly coordinated. In our case study, we 
consider three different products within this product line:  

BasePapcemaker: A BasePacemaker has the basic functionality 
shared by all pacemakers: generating a pulse whenever no heart 
beat is sensed during the sensing interval.  

ModeTransitivePacemaker: A ModeTransitivePacemaker can 
switch between Inhibited Mode and Triggered Mode during 
runtime. In the Inhibited Mode, the pacemaker acts exactly like a 
BasePacemaker. In the Triggered Mode, a pulse follows every 
heartbeat. (Triggered Mode is mainly used in therapies for dual-
chamber pacemakers.) 

RateResponsivePacemaker: A RateResponsivePacemaker acts 
similarly to the BasePacemaker but can adjust its sensing interval 
according to the patient’s current activity level: LRLrate, 
denoting the Lower Rate level for a patient’s normal activities and 
URL rate, denoting the Upper Rate Level when a patient is 
exercising. 

3.2 An Example of Crosscutting Variability 
Many of the major components in a pacemaker have to log their 
critical events into an EventRecorder component for use in 

making therapy decisions either by the pacemaker or by the 
doctors [14]. However, different pacemakers log different events 
at different relative or absolute times. Event Logging is a 
crosscutting variability whose functionality is shared among 
different components in each pacemaker system. Requirements 
and features for this product line are specified in [27] using a 
Commonality and Variability Analysis (CVA), as part of the 
FAST approach [49]. The excerption of CVA for the event 
logging is presented in Table 1. The variabilities and 
commonalities are detailed in Table 2. 

 

Table 1. Excerpts from pacemaker product line 
Commonality  & Variability Analysis 

Commonality 1. A pacemaker shall log average heart rate sensed 
every fixed recording interval at the BaseSensor component. 

Commonality 2.  A pacemaker operating in Inhibited mode shall 
record the pulse width of every pulse being generated at the 
PulseGenerator component. 

Variability 1. A pacemaker operating in Triggered mode shall 
record the average number of pulses generated every fixed   
recording interval at the PulseGenerator component. 

Variability 2. A pacemaker with an extra sensor shall record the 
percentage of the pacemaker sensing at LRLrate every fixed 
recording interval at the ExtraSensor component. 

 

Table 2. Event Logging Variability & Commonality 

Product 
Name 

Component 
Name Events to Log 

Base Sensor Average heart rate sensed every 
fixed recording interval Base 

Pacemaker Pulse 
Generator 

The pulse width of every pulse 
being made 

Base 
Sensor 

Average heart rate sensed every 
fixed recording interval 

Mode 
Transitive 
Pacemaker Pulse 

Generator 

1) In the Triggered mode, the 
average number of pulses 
generated every fixed recording 
interval 
2) In the Inhibited mode, the 
pulse width of every pulse being 
generated 

Base 
Sensor 

Average heart rate sensed every 
fixed recording interval 

Pulse 
Generator 

The pulse width of every pulse 
being made 

Rate 
Responsive 
Pacemaker 

Extra 
Sensor 

The percentage of the 
pacemaker sensing at LRLrate 
every fixed recording interval 

 

3.3 Modeling using OO techniques 
The Object Management Group (OMG) [33] uses UML [10] as a 
standard language for the Model-Driven Architecture [30]. In this 



section, we are using the UML 2.0 statechart [10] to model 
crosscutting variabilities. Statechart was preferred over other 
modeling artifacts for two reasons. First, it is particular suitable 
for detailed behavioral modeling. Second, it is close to 
implementation and is crucial in generating executable models to 
validate the design. The successful modeling in statecharts not 
only guides the implementation, but also provides assurance for 
later stages. 
The following subsections describe the process of incremental 
modeling [27] of the crosscutting variabilities in different 
products. It is supported by the Rhapsody software modeling 
environment [13] from I-Logix. We start from the product that 
has the fewest variations (i.e., the BasePacemaker), and then 
incrementally build the model with variations of other products in 
the product line.  

3.3.1 BasePacemaker 
Based on the UML statechart model for the pacemaker product 
lines described in our previous work [27], we add the behavior of 
the EventRecorder of the BasePacemaker using the statechart 
shown in Fig. 1. It is composed of three orthogonal statecharts 
[10]: the BaseSensorCounting and BaseSensorRecording 
subcharts for recording the average heart rate at every 
recordingInterval, and the PulseGeneratorRecording subchart for 
recording the pulse width every time a pulse is generated.  
In order to get the pulse width value (denoting how long the pulse 
lasts), which is a private attribute of the PulseGenerator Class, the 
PulseGenerator has to send this value explicitly as a parameter of 
the evPulseDone message (Fig. 2). The “show(params->width)” 
in Fig. 1 is a function that prints the value of the parameter named 
“width” (which is the parameter of “evPulseDone”).  
 

 
Figure 1. BasePacemaker’s EventRecorder  

 

 
Figure 2. BasePacemaker’s PulseGenerator  

3.3.2  ModeTransitivePacemaker 
The statechart of EventRecorder in the 
ModeTransitivePacemaker, shown in Fig. 3, is created by 
inheriting [18] the EventRecorder’s statechart from the 
BasePacemaker. Variability 1 in Table 1 (mode transitive) is 
modeled by adding a condition connector [10] (the symbol of a 
circle with a “C” inside) in the sub-chart for pulse recording, and 
by adding a new subchart of pulse counting. The sub-chart of 

mode transitions (InhibitedMode and TriggeredMode) is created 
due to the need to keep the mode attributes local (as a private 
member, required by the modeling tool Rhapsody [13], as well as 
a common practice in Object- Oriented software development).   
 

 
Figure 3. ModeTransitivePacemaker’s EventRecorder  

 

 
Figure 4. RateResponsivePacemaker’s EventRecorder  

3.3.3 RateResponsivePacemaker 
There are two ways to implement the statechart for the 
EventRecorder in the RateResponsivePacemaker. The first is to 
create an EventRecorder statechart for the whole product line (we 
call it PL_EventRecorder) by introducing the Variability 2 in 
Table 1 (the rate responsive variability) into the EventRecorder 
statechart of ModeTransitivePacemaker via transitions with 
condition connectors. This way the PL_EventRecorder becomes a 
parameterized state model [18] for the whole product line. This 
method is described in detail in our previous work [27]. The 
second way is to inherit the statechart of EventRecorder in 
BasePacemaker. As a result, each product member has its own 
statechart deriving from a base statechart (the BasePacemaker’s). 
These two ways are the common choices in modeling variabilities 
using statecharts in a software product line [18]. For ease of 
illustration of the variability we show the statechart generated 
using the second method in Fig. 4. 
As seen in Fig. 4, Variability 2 in Table 1 is modeled by adding a 
sub-chart for ExtraSensor counting and recording separately. As 
in the ModeTransitivePacemaker, a sub-chart of activity level 
(URL and LRL) is created. 



Thus, in the OO approach, the EventRecorder component acts 
similarly to an Observer Pattern [16]: it monitors all the triggering 
events and then dispatches them to their separate handlers 
(orthogonal sub-charts). 

3.4 Modeling using AO techniques 
Due to the lack of standard AO modeling techniques and support 
for weaving mechanism, we use UML sequence diagrams 
together with textual descriptions to demonstrate the behavior of 
an aspect. Sequence diagrams [10] capture the dynamic view of a 
system. They show a set of roles and the messages that are passed 
between instances of the roles. Sequence diagrams have been used 
before to demonstrate the behavior of aspects [6], [11], [43]. In 
this case, the sequence diagram serves as an abstraction to 
demonstrate the characteristics of common AO techniques. 
 

 
Figure 5. Generic Scenario of the EventRecorder Aspect  

 
The EventRecorder component in our example system 
encapsulates the crosscutting variability of event logging. 
Therefore, we choose to model this component as an aspect. The 
generic scenario of the EventRecorder aspect is depicted in Fig. 5. 
It is composed of two parts: the triggering event, which is the 

location where the aspect crosscuts (call it “location”), and the 
action, which is the behavior of the aspect after being triggered 
(call it “mechanism”). Table 3 illustrates the different locations 
and mechanisms for the EventRecorder aspect in the product line 
(the events and action names are the abstraction of their 
counterparts in Fig. 1, 2 and 3). Table 3 shows that several 
locations share similar mechanisms. Table 4 helps demonstrate 
this in a clearer fashion. 
We make the following observations by comparing Table 3 and 
Table 4: 
1) Each group of locations that share a similar mechanism can be 
modeled as a “pointcut” [23], while the similar mechanism can be 
modeled as an “advice” [23]. By “similar” we mean that they 
behave the same except for the context to which they apply. For 
example, the counter incrementing behavior in different 
components is similar, except for the variable it increments. 
In some cases, mechanisms differ significantly at different 
locations. For example, the mechanism for the location 
“RateResponsivePacemaker -> ExtraSensor -> recording interval 
timeout” differs from the second mechanism in Table 4 because 
the first takes the sum and the second takes the average. These 
mechanisms cannot be modeled as a single advice. 
2) Here, where there is only a single crosscutting variability, the 
mechanisms do not overlap. This is because, even if two 
mechanisms apply to the same locations, they happen under 
different conditions. Thus, it does not make much difference 
whether we model each of the matching pointcut and advice pairs 
(as described above) in a separate aspect or model all of them in 
one aspect. 
 

 

Table 3. Aspect Specification  

Aspect Product 
Name Component Name 

Join Point Advice 

Sensed counter increases by one 
Base Sensor 

recording interval timeout record the average counter value during the recording interval, then 
reset the counter 

Base 
Pacemaker 

Pulse Generator Pulse record the pulse width 

Base Sensor Same as in BasePacemaker 

Pulse 
1) if in Inhibited mode, same as BasePacemaker 
2) if in Triggered mode, counter increases by one Mode 

Transitive 
Pacemaker Pulse Generator 

recording interval timeout 
1) if in Inhibited mode, do nothing 
2) if in Triggered mode, record the average counter value during the 
recording interval, then reset the counter 

Base Sensor Same as in BasePacemaker 

Pulse Generator Same as in BasePacemaker 

1 msec timeout 
1) if in LRLrate, LRLrate counter increases by one 
2) if in URLrate, URLrate counter increases by one 

Rate 
Responsive 
Pacemaker Extra Sensor 

recording interval timeout Record the ratio of the LRLrate counter value to the  sum of the 
LRLrate and URLrate counter values, then reset the counters 



Table 4. Mechanism Classification  

Mechanism Location Condition 

Counter residing in the 
same component as the 
location increases by one 

1) BasePacemaker->BaseSensor->sensed event 
2) ModeTransitivePacemaker->BaseSensor->sensed event 
3) ModeTransitivePacemaker->PulseGenerator->sensed event 
4) RateResponsivePacemaker -> BaseSensor ->sensed event 
5) RateResponsivePacemaker -> ExtraSensor -> 1 msec timeout 

3) if in Inhibited Mode 
5) if in LRLrate, increase 
LRLrate counter; if in 
URLrate, increase 
URLrate counter 

Record the average counter 
value during the recording 
interval, then reset the 
counter 

1) BasePacemaker -> BaseSensor -> recording interval timeout 
2) ModeTransitivePacemaker   -> PulseGenerator -> recording interval timeout 
3) RateResponsivePacemaker   ->BaseSensor -> recording interval timeout 

2) if in Triggered Mode 

Record the pulse width 
1) BasePacemaker -> PulseGenerator -> pulse event 
2) ModeTransitivePacemaker -> PulseGenerator -> pulse event 
3) ModeTransitivePacemaker -> PulseGenerator -> pulse event 

2) if in Triggered Mode 

 
However, if we introduce another crosscutting variability into the 
product line, it is likely that the mechanisms from the two 
variabilities will overlap in locations. In that case, conflict 
resolving techniques are needed. These could be similar to the 
feature interaction handling mechanisms [35] for local 
variabilities, but we have to bear in mind that such conflict 
resolution will apply invasively in the AO setting (rather than 
locally as in the OO setting). In fact, the tool support for aspect 
interaction at the programming level [3], [39] may be migrated to 
the modeling level.  
3) The locations to which a crosscutting variability applies to can 
be fragmented within and across a product. For example, 
locations that share a similar mechanism can reside in different 
components of the same product, or in components from different 
products. This means that the scope of the join point (as well as 
the weaving) needs to be extended to the product-line level, rather 
than the product level as in traditional AOSD.  
4) There are two ways that a condition can affect the mechanism. 
In the first way (seen in the first condition in the first mechanism 
group in Table 4) the condition serves as a switch to decide 
whether an event is able to trigger the action. In the second way 
(seen in the second condition in the same group) the condition 
uses context information passed to tell where the action should 
apply. Consequently, these two types of conditions need to be 
modeled differently. This remains an open problem for our future 
work. 

3.5 Findings 
Some similarities and differences between the OO approach and 
AO approach are observed as follows: 
1. Both approaches handle the crosscutting variability in a 
centralized manner. The OO approach invokes the methods 
explicitly while the AO approach handles it implicitly [17], [44]. 
2. The OO approach requires each component being monitored to 
send its local variable values explicitly via messages, since the 
local variables are private in the OO paradigm. However, in the 
AO approach, the aspects are allowed reflective access to certain 
variables at the join points, such as the executing object, the target  

 
of a call, arguments of a method, etc. Explicitly sending these 
variables is not necessary in the AO approach. 
3. In the OO approach, the location where the handling 
mechanism takes place (after the triggering event) must involve a 
component other than the component that sends the triggering 
event.  However in the AO approach, there is no such restriction. 
This is due to the similar reason as above. 
4. In the AO approach, if we treat different locations that share a 
similar mechanism as join points for the same aspect, modeling 
variabilities that have a common mechanism but differ in 
locations will be easier than in the OO approach, assuming 
automatic weaving mechanisms are provided. This is because in 
the OO approach, users have to manually adapt the variability 
into the local context, while in the AO approach users simply 
need to add some new join points. This is true for variabilities 
both within a product and across several products. In this 
situation, the AO approach makes the modeling of crosscutting 
features more reusable across the software product line.  
5. The AO approach does not support more variability than the 
OO approach, since each different handling mechanism requires a 
separate advice. With many variations in the handling 
mechanism, both the AO approach and the OO approach incur 
significant overhead. Creating aspect templates or generic aspects 
helps reuse, but does not accommodate more variabilities. 

4. DISCUSSION  
In this section we give some suggestions for the weaving 
mechanism in the modeling level, as well as two open problems 
confronted in this work. Finally, a set of criteria for future 
empirical studies is proposed. 

4.1 Weaving Mechanism 
Without concrete weaving mechanisms, no executable models can 
be generated from the AO modeling. Weaving at the modeling 
level also provides a way to generate models independent of 
implementation languages. Based on our experiences using 
Rhapsody [13] as an OO modeling tool, we propose some 
suggestions for the weaving mechanism at the modeling level. 



1. The effect of the aspect should be able to be demonstrated in 
the animation of the executable model. In other words, users 
should be able to model the aspect and the rest of the system 
separately and see the effect of weaving in the animation.  
2. Users should be able to choose to implement the aspect weaver 
themselves by building it in the models, or to choose an existing 
weaver. For the latter, users should be able to turn it on or off. 
3. Users should be able to view the marked join point, attributes 
and methods (advices) introduced by aspects statically in the 
system model, even though they cannot use them other than in the 
aspect.  

4.2 Open Problems 
The first open problem is about whether to model local features 
(e.g., switching to Inhibited Mode during runtime) at the product-
line level using the AO approach. As suggested in Section 3.5, if 
we extend the scope of weaving and join point to the product line 
level, e.g., advising several product members using one aspect, 
we can achieve greater reuse of the crosscutting features. That 
raises the question of whether we can and should do the same for 
those local features. Some preliminary case studies can be found 
at [2] and [4]. 
The second problem is how much obliviousness a modeler should 
have about the weaving process. Unlike the coding stage, the 
modeling stage calls for exemplification of the design intent. 
Therefore we expect more knowledge about the weaving process 
to be exposed in the modeling level than in the AOP level. 
However, how much is enough remains a problem for future 
research. 

4.3 Evaluation Criteria 
In this section we propose the criteria for comparing the 
capability of different modeling techniques for crosscutting 
variabilities. The metrics introduced here, while preliminary and 
partial, identify some criteria that may be useful in subsequent, 
more empirical evaluations.  

Feasibility 
This criterion evaluates if it is easy or possible to model all types 
of crosscutting variabilities. In order to do this, a taxonomy of 
crosscutting variabilities needs to be provided. Anastasopoulos 
and Muthig [3] have done an initial step by classifying variations 
into two types: “positive” and “negative”, denoting the effect of 
variability on the system (i.e., adding vs. removing 
functionalities). 

Degrees of variability 
This denotes how flexible the modeling technique is for modeling 
the variability. Note that the OO and AO approaches can have 
different notions of “flexibility”. For instance, in the OO 
approach, binding time [46] is used to describe how late 
developers are able to change a variability (or select a variant at a 
specific variation point). However, this notion is not very 
meaningful for the AO approach as most aspects are bound at 
compilation time and the rest at load time or run time. 
Therefore, we propose to measure the degree of crosscutting 
variability by evaluating the limitation of mechanisms and 
diversity of locations where variability can occur. (Point 4 of 
Section 3.5 provided such an example.) 

Evolution 
This is an important issue in software product lines. Specifically, 
we need to evaluate if an approach supports changing 
requirements and the addition of new product-line members. This 
can be done by checking the likely impact introduced by a 
change.  

Executable model 
As stated at the beginning of this paper, executable models are 
very important in clarifying the design intent and validating 
design logics. This is an indispensable part in MDD. We examine 
this criterion by checking if the modeling language provides 
sufficient support for describing behaviors and if code generation 
(for both the system and environment) is available. 

Tool support 
Tool support is crucial in making an approach scalable, especially 
in a product line setting. With sufficient tool support, the code 
generation should be automatically done. Moreover, users should 
be able to run the executable model and check it against the 
requirements scenarios [13]. 

Cost 
Just as in product-line engineering, where too few products do not 
provide a gain via reuse [49], a new modeling technique for the 
crosscutting features does not necessarily always save time and 
money. We need to identify the situations when it will receive the 
biggest gain and maybe provide a pay-off model for such a 
technique. 

5. RELATED WORK 
Existing work that introduced the concept of aspects into software 
product-line development include [3], [5], [9], [19], [24], [25], 
and [39].  
The work by Apel et. al. [5] combines the force of Feature 
Oriented Programming (FOP) and Aspect Oriented Programming 
(AOP) in the code level. Loughran and Rashid [24] propose 
‘framed aspects’ as a technique combining AOP, frame 
technology and Feature-Oriented Domain Analysis (FODA). Both 
[5] and [24] compare the aspect-oriented approach with the 
approach they propose to combine with (mixin layers and frame 
respectively) and conclude that they complement each other. This 
also backs up our findings that OO and AO variability modeling 
techniques complement each other, such as AOP and OOP.  

Anastasopoulos and Muthig [3], as well as Saleh and Gomaa [39], 
present evaluations of the use of AOP in the implementation of 
software product lines. Concrete tool support is provided for 
automatic weaving [39] or configuration [3]. 

Griss [19] proposes a feature-driven analysis to find aspects as 
crosscutting features at the high level and map them into code 
fragments in the components in the low level. The feature analysis 
provides the traceability document through the development 
cycle. 

Loughran et. al. [25] introduce NAPLES, a tool that uses natural 
language processing and aspect-oriented techniques to derive 
feature-oriented models (including features, aspects, variabilities 
and commonalities in a given domain) from requirements.  



Batory et. al. [9] models the components of distributed 
simulations as aspects, via the help of DSLs and GenVoca PLAs. 

A significant amount of work has been devoted to aspect-oriented 
modeling for single systems, e.g., [6], [21], [41], [42], [43], and 
[51].  

However, none of the above work addresses the role of aspects in 
the model-driven development of product lines in contrast to the 
traditional OO approach, as we do here. 

6. CONCLUSION 
The work described here provides a preliminary comparison of 
the OO and AO approaches in modeling crosscutting variabilities, 
based on experience with a product line case study. Several 
observations are made that may be helpful for future research. 
Possible future work includes tools for resolving aspect conflicts, 
more empirical evaluations of the two approaches, a rigid 
weaving mechanism, and its implementation in an existing MDD 
tool. 
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