
The Role of Aspects in Modeling Product Line Variabilities
Jing (Janet) Liu

Department of Computer Science
Iowa State University

1-515-294-2735

janetlj@cs.iastate.edu

Robyn R. Lutz
Department of Computer Science

Iowa State University and
Jet Propulsion Laboratory/Caltech

1-515-294-3654

rlutz@cs.iastate.edu

Hridesh Rajan
Department of Computer Science

Iowa State University
1-515-294-6168

hridesh@cs.iastate.edu

ABSTRACT
As of today, it is unclear whether aspect-oriented modeling can
benefit the model-driven development of software product lines.
Although some preliminary studies exist at the requirements and
implementation level that investigate the interaction of
crosscutting behaviors and product-line variabilities, to the best of
our knowledge these interactions at the modeling level are not yet
investigated. The contribution of this work is a preliminary study
of the object-oriented and aspect-oriented approaches for handling
crosscutting variabilities. This study helps us identify desired
characteristics of aspect-oriented modeling techniques for product
lines. A pacemaker product line, extracted from the real industry
case, serves as a running example to illustrate our findings.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Representation.

General Terms
Design, Standardization.

Keywords
Model-Driven Development, Software Product Lines, Variability,
Aspect, Aspect-Oriented Modeling.

1. INTRODUCTION
Model-driven development (MDD) [29], [30], [37] has played a
very important role in software product-line engineering [18],
[20], [26]. The executable models help exemplify the
requirements, detect design flaws, validate the effects of
variability management and help future maintenance [31].
However, the variability realization techniques in this area are
geared toward local variabilities [7], [18]. We define crosscutting
variabilities as those whose realizations are “fragmented across a
system” [36]. We define local variabilities as those that can be
captured in a modularized, object-oriented software artifact (e.g.,
a use case, an architectural block, a class, etc.) in the dominant
decomposition. The lack of designated mechanisms for handling
crosscutting variabilities in the product-line modeling level has
hindered the sufficient support of all types of variabilities in
MDD and created a void in validating design decisions regarding
them.
Aspect-Oriented Software Development (AOSD) [15], [21], [23]
has emerged as a promising solution for handling crosscutting
concerns [47] in all phases of the software development lifecycle.
Several approaches [5], [24], [25] have already extended AOSD
into product-line requirements and implementation. Thus, it is

natural to seek to combine Aspect-Oriented approaches with
MDD in software product line practice.
This paper conducts a preliminary study of the Object-Oriented
(OO) and Aspect-Oriented (AO) approaches in handling
crosscutting, behavioral variabilities. A pacemaker product line,
extracted from a real industry case, is used to illustrate our
findings. For example, we observe that in this product line the AO
approach handles variabilities that have a common mechanism but
differ in locations better than the OO approach, if an automatic
weaving mechanism is provided. However, the AO approach does
not necessarily support more variability than the OO approach.
The rest of this paper is organized as follows. Section 2 presents
needed background information. Section 3 introduces the running
example (a pacemaker product line) and reports experience in
modeling the crosscutting behavior using OO and AO techniques.
Section 4 discusses our observations to some open problems
found during the case study. Section 5 provides related work.
Finally, Section 6 concludes and describes future work.

2. BACKGROUND
Model Driven Development (MDD) [29], [30], [37] is a software
development approach that uses diagrams to communicate and
uses models to understand and validate the designs, as well as to
help software implementation, deployment and maintenance. It
often uses the Object-Oriented paradigm [28] to abstract the
system functionality into models.
A software product line is a set of software systems developed by
a single company that share a common set of core requirements
yet differ amongst each other according to a set of allowable
variations [12], [49]. The product-line engineering concept is
advantageous in that it exploits the potential for reusability in the
analysis and development of the core and variable requirements in
each member of the product line. Variability is the part of the
software artifact that makes a product line member differ from
others [49]. Four main approaches used to model variability in
product lines are [48]: parameterization, information hiding,
inheritance, and variation points. These approaches can be readily
integrated with component engineering [34] and MDD [18].
However, none of them is designed to address those variabilities
that crosscut multiple software artifacts. (See Sect. 3 for an
example.)
AOSD [15], [21], [23] is emerging as a way to complement the
traditional Object-Oriented Software Development by
modularizing crosscutting concerns in a new software artifact
called an aspect [23]. The places where an aspect crosscuts a
software system are called join points [23].

Existing work in this area has covered a broad spectrum of the
software development processes for single systems, from
requirements analysis [8], [11], [25], [32], [38], architectural
design [22], [40], modeling [1], [6], [45], coding [5], [24], and
testing [50], [51]. Because of its ability in handling crosscutting
concerns, AOSD is a natural candidate to manage crosscutting
variabilities in a product line setting.

3. CASE STUDY
In this section we first present the running example, then give
some concrete crosscutting variabilities and describe the modeling
process using the OO and the AO approaches. Some findings are
provided at the end.

3.1 Pacemaker Product Line
We use a pacemaker product line to evaluate different techniques
for modeling crosscutting variabilities. These are real-time,
embedded, and safety critical systems, that have been successfully
developed in industry using MDD and software product line
practices [26]. Studying the modeling techniques used for its
variabilities can not only help enhance the safety assurance level
of such systems, but may also yield observations that raise our
confidence in other similar systems.
A pacemaker is an embedded medical device designed to monitor
and regulate the beating of the heart when it is not beating at a
normal rate. It consists of a monitoring device embedded in the
chest area as well as a set of pacing leads (wires) from the
monitoring device into the chambers of the heart [14]. In our
simplified example, the monitoring device has three basic parts: a
sensing part (sensor) that senses heart beat, a stimulation part
(pulse generator) that generates pulses to the heart, and a
controlling part (controller) that configures different pacing and
sensing algorithms and issues commands.
In this example, we only consider a single-chambered product
line of pacemakers that does pacing and sensing in the heart's
ventricles. More advanced pacemakers can be dual-chamber, and
the pacing or sensing algorithms applied to each chamber can be
different although highly coordinated. In our case study, we
consider three different products within this product line:

BasePapcemaker: A BasePacemaker has the basic functionality
shared by all pacemakers: generating a pulse whenever no heart
beat is sensed during the sensing interval.

ModeTransitivePacemaker: A ModeTransitivePacemaker can
switch between Inhibited Mode and Triggered Mode during
runtime. In the Inhibited Mode, the pacemaker acts exactly like a
BasePacemaker. In the Triggered Mode, a pulse follows every
heartbeat. (Triggered Mode is mainly used in therapies for dual-
chamber pacemakers.)

RateResponsivePacemaker: A RateResponsivePacemaker acts
similarly to the BasePacemaker but can adjust its sensing interval
according to the patient’s current activity level: LRLrate,
denoting the Lower Rate level for a patient’s normal activities and
URL rate, denoting the Upper Rate Level when a patient is
exercising.

3.2 An Example of Crosscutting Variability
Many of the major components in a pacemaker have to log their
critical events into an EventRecorder component for use in

making therapy decisions either by the pacemaker or by the
doctors [14]. However, different pacemakers log different events
at different relative or absolute times. Event Logging is a
crosscutting variability whose functionality is shared among
different components in each pacemaker system. Requirements
and features for this product line are specified in [27] using a
Commonality and Variability Analysis (CVA), as part of the
FAST approach [49]. The excerption of CVA for the event
logging is presented in Table 1. The variabilities and
commonalities are detailed in Table 2.

Table 1. Excerpts from pacemaker product line
Commonality & Variability Analysis

Commonality 1. A pacemaker shall log average heart rate sensed
every fixed recording interval at the BaseSensor component.

Commonality 2. A pacemaker operating in Inhibited mode shall
record the pulse width of every pulse being generated at the
PulseGenerator component.

Variability 1. A pacemaker operating in Triggered mode shall
record the average number of pulses generated every fixed
recording interval at the PulseGenerator component.

Variability 2. A pacemaker with an extra sensor shall record the
percentage of the pacemaker sensing at LRLrate every fixed
recording interval at the ExtraSensor component.

Table 2. Event Logging Variability & Commonality

Product
Name

Component
Name Events to Log

Base Sensor Average heart rate sensed every
fixed recording interval Base

Pacemaker Pulse
Generator

The pulse width of every pulse
being made

Base
Sensor

Average heart rate sensed every
fixed recording interval

Mode
Transitive
Pacemaker Pulse

Generator

1) In the Triggered mode, the
average number of pulses
generated every fixed recording
interval
2) In the Inhibited mode, the
pulse width of every pulse being
generated

Base
Sensor

Average heart rate sensed every
fixed recording interval

Pulse
Generator

The pulse width of every pulse
being made

Rate
Responsive
Pacemaker

Extra
Sensor

The percentage of the
pacemaker sensing at LRLrate
every fixed recording interval

3.3 Modeling using OO techniques
The Object Management Group (OMG) [33] uses UML [10] as a
standard language for the Model-Driven Architecture [30]. In this

section, we are using the UML 2.0 statechart [10] to model
crosscutting variabilities. Statechart was preferred over other
modeling artifacts for two reasons. First, it is particular suitable
for detailed behavioral modeling. Second, it is close to
implementation and is crucial in generating executable models to
validate the design. The successful modeling in statecharts not
only guides the implementation, but also provides assurance for
later stages.
The following subsections describe the process of incremental
modeling [27] of the crosscutting variabilities in different
products. It is supported by the Rhapsody software modeling
environment [13] from I-Logix. We start from the product that
has the fewest variations (i.e., the BasePacemaker), and then
incrementally build the model with variations of other products in
the product line.

3.3.1 BasePacemaker
Based on the UML statechart model for the pacemaker product
lines described in our previous work [27], we add the behavior of
the EventRecorder of the BasePacemaker using the statechart
shown in Fig. 1. It is composed of three orthogonal statecharts
[10]: the BaseSensorCounting and BaseSensorRecording
subcharts for recording the average heart rate at every
recordingInterval, and the PulseGeneratorRecording subchart for
recording the pulse width every time a pulse is generated.
In order to get the pulse width value (denoting how long the pulse
lasts), which is a private attribute of the PulseGenerator Class, the
PulseGenerator has to send this value explicitly as a parameter of
the evPulseDone message (Fig. 2). The “show(params->width)”
in Fig. 1 is a function that prints the value of the parameter named
“width” (which is the parameter of “evPulseDone”).

Figure 1. BasePacemaker’s EventRecorder

Figure 2. BasePacemaker’s PulseGenerator

3.3.2 ModeTransitivePacemaker
The statechart of EventRecorder in the
ModeTransitivePacemaker, shown in Fig. 3, is created by
inheriting [18] the EventRecorder’s statechart from the
BasePacemaker. Variability 1 in Table 1 (mode transitive) is
modeled by adding a condition connector [10] (the symbol of a
circle with a “C” inside) in the sub-chart for pulse recording, and
by adding a new subchart of pulse counting. The sub-chart of

mode transitions (InhibitedMode and TriggeredMode) is created
due to the need to keep the mode attributes local (as a private
member, required by the modeling tool Rhapsody [13], as well as
a common practice in Object- Oriented software development).

Figure 3. ModeTransitivePacemaker’s EventRecorder

Figure 4. RateResponsivePacemaker’s EventRecorder

3.3.3 RateResponsivePacemaker
There are two ways to implement the statechart for the
EventRecorder in the RateResponsivePacemaker. The first is to
create an EventRecorder statechart for the whole product line (we
call it PL_EventRecorder) by introducing the Variability 2 in
Table 1 (the rate responsive variability) into the EventRecorder
statechart of ModeTransitivePacemaker via transitions with
condition connectors. This way the PL_EventRecorder becomes a
parameterized state model [18] for the whole product line. This
method is described in detail in our previous work [27]. The
second way is to inherit the statechart of EventRecorder in
BasePacemaker. As a result, each product member has its own
statechart deriving from a base statechart (the BasePacemaker’s).
These two ways are the common choices in modeling variabilities
using statecharts in a software product line [18]. For ease of
illustration of the variability we show the statechart generated
using the second method in Fig. 4.
As seen in Fig. 4, Variability 2 in Table 1 is modeled by adding a
sub-chart for ExtraSensor counting and recording separately. As
in the ModeTransitivePacemaker, a sub-chart of activity level
(URL and LRL) is created.

Thus, in the OO approach, the EventRecorder component acts
similarly to an Observer Pattern [16]: it monitors all the triggering
events and then dispatches them to their separate handlers
(orthogonal sub-charts).

3.4 Modeling using AO techniques
Due to the lack of standard AO modeling techniques and support
for weaving mechanism, we use UML sequence diagrams
together with textual descriptions to demonstrate the behavior of
an aspect. Sequence diagrams [10] capture the dynamic view of a
system. They show a set of roles and the messages that are passed
between instances of the roles. Sequence diagrams have been used
before to demonstrate the behavior of aspects [6], [11], [43]. In
this case, the sequence diagram serves as an abstraction to
demonstrate the characteristics of common AO techniques.

Figure 5. Generic Scenario of the EventRecorder Aspect

The EventRecorder component in our example system
encapsulates the crosscutting variability of event logging.
Therefore, we choose to model this component as an aspect. The
generic scenario of the EventRecorder aspect is depicted in Fig. 5.
It is composed of two parts: the triggering event, which is the

location where the aspect crosscuts (call it “location”), and the
action, which is the behavior of the aspect after being triggered
(call it “mechanism”). Table 3 illustrates the different locations
and mechanisms for the EventRecorder aspect in the product line
(the events and action names are the abstraction of their
counterparts in Fig. 1, 2 and 3). Table 3 shows that several
locations share similar mechanisms. Table 4 helps demonstrate
this in a clearer fashion.
We make the following observations by comparing Table 3 and
Table 4:
1) Each group of locations that share a similar mechanism can be
modeled as a “pointcut” [23], while the similar mechanism can be
modeled as an “advice” [23]. By “similar” we mean that they
behave the same except for the context to which they apply. For
example, the counter incrementing behavior in different
components is similar, except for the variable it increments.
In some cases, mechanisms differ significantly at different
locations. For example, the mechanism for the location
“RateResponsivePacemaker -> ExtraSensor -> recording interval
timeout” differs from the second mechanism in Table 4 because
the first takes the sum and the second takes the average. These
mechanisms cannot be modeled as a single advice.
2) Here, where there is only a single crosscutting variability, the
mechanisms do not overlap. This is because, even if two
mechanisms apply to the same locations, they happen under
different conditions. Thus, it does not make much difference
whether we model each of the matching pointcut and advice pairs
(as described above) in a separate aspect or model all of them in
one aspect.

Table 3. Aspect Specification

Aspect Product
Name Component Name

Join Point Advice

Sensed counter increases by one
Base Sensor

recording interval timeout record the average counter value during the recording interval, then
reset the counter

Base
Pacemaker

Pulse Generator Pulse record the pulse width

Base Sensor Same as in BasePacemaker

Pulse
1) if in Inhibited mode, same as BasePacemaker
2) if in Triggered mode, counter increases by one Mode

Transitive
Pacemaker Pulse Generator

recording interval timeout
1) if in Inhibited mode, do nothing
2) if in Triggered mode, record the average counter value during the
recording interval, then reset the counter

Base Sensor Same as in BasePacemaker

Pulse Generator Same as in BasePacemaker

1 msec timeout
1) if in LRLrate, LRLrate counter increases by one
2) if in URLrate, URLrate counter increases by one

Rate
Responsive
Pacemaker Extra Sensor

recording interval timeout Record the ratio of the LRLrate counter value to the sum of the
LRLrate and URLrate counter values, then reset the counters

Table 4. Mechanism Classification

Mechanism Location Condition

Counter residing in the
same component as the
location increases by one

1) BasePacemaker->BaseSensor->sensed event
2) ModeTransitivePacemaker->BaseSensor->sensed event
3) ModeTransitivePacemaker->PulseGenerator->sensed event
4) RateResponsivePacemaker -> BaseSensor ->sensed event
5) RateResponsivePacemaker -> ExtraSensor -> 1 msec timeout

3) if in Inhibited Mode
5) if in LRLrate, increase
LRLrate counter; if in
URLrate, increase
URLrate counter

Record the average counter
value during the recording
interval, then reset the
counter

1) BasePacemaker -> BaseSensor -> recording interval timeout
2) ModeTransitivePacemaker -> PulseGenerator -> recording interval timeout
3) RateResponsivePacemaker ->BaseSensor -> recording interval timeout

2) if in Triggered Mode

Record the pulse width
1) BasePacemaker -> PulseGenerator -> pulse event
2) ModeTransitivePacemaker -> PulseGenerator -> pulse event
3) ModeTransitivePacemaker -> PulseGenerator -> pulse event

2) if in Triggered Mode

However, if we introduce another crosscutting variability into the
product line, it is likely that the mechanisms from the two
variabilities will overlap in locations. In that case, conflict
resolving techniques are needed. These could be similar to the
feature interaction handling mechanisms [35] for local
variabilities, but we have to bear in mind that such conflict
resolution will apply invasively in the AO setting (rather than
locally as in the OO setting). In fact, the tool support for aspect
interaction at the programming level [3], [39] may be migrated to
the modeling level.
3) The locations to which a crosscutting variability applies to can
be fragmented within and across a product. For example,
locations that share a similar mechanism can reside in different
components of the same product, or in components from different
products. This means that the scope of the join point (as well as
the weaving) needs to be extended to the product-line level, rather
than the product level as in traditional AOSD.
4) There are two ways that a condition can affect the mechanism.
In the first way (seen in the first condition in the first mechanism
group in Table 4) the condition serves as a switch to decide
whether an event is able to trigger the action. In the second way
(seen in the second condition in the same group) the condition
uses context information passed to tell where the action should
apply. Consequently, these two types of conditions need to be
modeled differently. This remains an open problem for our future
work.

3.5 Findings
Some similarities and differences between the OO approach and
AO approach are observed as follows:
1. Both approaches handle the crosscutting variability in a
centralized manner. The OO approach invokes the methods
explicitly while the AO approach handles it implicitly [17], [44].
2. The OO approach requires each component being monitored to
send its local variable values explicitly via messages, since the
local variables are private in the OO paradigm. However, in the
AO approach, the aspects are allowed reflective access to certain
variables at the join points, such as the executing object, the target

of a call, arguments of a method, etc. Explicitly sending these
variables is not necessary in the AO approach.
3. In the OO approach, the location where the handling
mechanism takes place (after the triggering event) must involve a
component other than the component that sends the triggering
event. However in the AO approach, there is no such restriction.
This is due to the similar reason as above.
4. In the AO approach, if we treat different locations that share a
similar mechanism as join points for the same aspect, modeling
variabilities that have a common mechanism but differ in
locations will be easier than in the OO approach, assuming
automatic weaving mechanisms are provided. This is because in
the OO approach, users have to manually adapt the variability
into the local context, while in the AO approach users simply
need to add some new join points. This is true for variabilities
both within a product and across several products. In this
situation, the AO approach makes the modeling of crosscutting
features more reusable across the software product line.
5. The AO approach does not support more variability than the
OO approach, since each different handling mechanism requires a
separate advice. With many variations in the handling
mechanism, both the AO approach and the OO approach incur
significant overhead. Creating aspect templates or generic aspects
helps reuse, but does not accommodate more variabilities.

4. DISCUSSION
In this section we give some suggestions for the weaving
mechanism in the modeling level, as well as two open problems
confronted in this work. Finally, a set of criteria for future
empirical studies is proposed.

4.1 Weaving Mechanism
Without concrete weaving mechanisms, no executable models can
be generated from the AO modeling. Weaving at the modeling
level also provides a way to generate models independent of
implementation languages. Based on our experiences using
Rhapsody [13] as an OO modeling tool, we propose some
suggestions for the weaving mechanism at the modeling level.

1. The effect of the aspect should be able to be demonstrated in
the animation of the executable model. In other words, users
should be able to model the aspect and the rest of the system
separately and see the effect of weaving in the animation.
2. Users should be able to choose to implement the aspect weaver
themselves by building it in the models, or to choose an existing
weaver. For the latter, users should be able to turn it on or off.
3. Users should be able to view the marked join point, attributes
and methods (advices) introduced by aspects statically in the
system model, even though they cannot use them other than in the
aspect.

4.2 Open Problems
The first open problem is about whether to model local features
(e.g., switching to Inhibited Mode during runtime) at the product-
line level using the AO approach. As suggested in Section 3.5, if
we extend the scope of weaving and join point to the product line
level, e.g., advising several product members using one aspect,
we can achieve greater reuse of the crosscutting features. That
raises the question of whether we can and should do the same for
those local features. Some preliminary case studies can be found
at [2] and [4].
The second problem is how much obliviousness a modeler should
have about the weaving process. Unlike the coding stage, the
modeling stage calls for exemplification of the design intent.
Therefore we expect more knowledge about the weaving process
to be exposed in the modeling level than in the AOP level.
However, how much is enough remains a problem for future
research.

4.3 Evaluation Criteria
In this section we propose the criteria for comparing the
capability of different modeling techniques for crosscutting
variabilities. The metrics introduced here, while preliminary and
partial, identify some criteria that may be useful in subsequent,
more empirical evaluations.

Feasibility
This criterion evaluates if it is easy or possible to model all types
of crosscutting variabilities. In order to do this, a taxonomy of
crosscutting variabilities needs to be provided. Anastasopoulos
and Muthig [3] have done an initial step by classifying variations
into two types: “positive” and “negative”, denoting the effect of
variability on the system (i.e., adding vs. removing
functionalities).

Degrees of variability
This denotes how flexible the modeling technique is for modeling
the variability. Note that the OO and AO approaches can have
different notions of “flexibility”. For instance, in the OO
approach, binding time [46] is used to describe how late
developers are able to change a variability (or select a variant at a
specific variation point). However, this notion is not very
meaningful for the AO approach as most aspects are bound at
compilation time and the rest at load time or run time.
Therefore, we propose to measure the degree of crosscutting
variability by evaluating the limitation of mechanisms and
diversity of locations where variability can occur. (Point 4 of
Section 3.5 provided such an example.)

Evolution
This is an important issue in software product lines. Specifically,
we need to evaluate if an approach supports changing
requirements and the addition of new product-line members. This
can be done by checking the likely impact introduced by a
change.

Executable model
As stated at the beginning of this paper, executable models are
very important in clarifying the design intent and validating
design logics. This is an indispensable part in MDD. We examine
this criterion by checking if the modeling language provides
sufficient support for describing behaviors and if code generation
(for both the system and environment) is available.

Tool support
Tool support is crucial in making an approach scalable, especially
in a product line setting. With sufficient tool support, the code
generation should be automatically done. Moreover, users should
be able to run the executable model and check it against the
requirements scenarios [13].

Cost
Just as in product-line engineering, where too few products do not
provide a gain via reuse [49], a new modeling technique for the
crosscutting features does not necessarily always save time and
money. We need to identify the situations when it will receive the
biggest gain and maybe provide a pay-off model for such a
technique.

5. RELATED WORK
Existing work that introduced the concept of aspects into software
product-line development include [3], [5], [9], [19], [24], [25],
and [39].
The work by Apel et. al. [5] combines the force of Feature
Oriented Programming (FOP) and Aspect Oriented Programming
(AOP) in the code level. Loughran and Rashid [24] propose
‘framed aspects’ as a technique combining AOP, frame
technology and Feature-Oriented Domain Analysis (FODA). Both
[5] and [24] compare the aspect-oriented approach with the
approach they propose to combine with (mixin layers and frame
respectively) and conclude that they complement each other. This
also backs up our findings that OO and AO variability modeling
techniques complement each other, such as AOP and OOP.

Anastasopoulos and Muthig [3], as well as Saleh and Gomaa [39],
present evaluations of the use of AOP in the implementation of
software product lines. Concrete tool support is provided for
automatic weaving [39] or configuration [3].

Griss [19] proposes a feature-driven analysis to find aspects as
crosscutting features at the high level and map them into code
fragments in the components in the low level. The feature analysis
provides the traceability document through the development
cycle.

Loughran et. al. [25] introduce NAPLES, a tool that uses natural
language processing and aspect-oriented techniques to derive
feature-oriented models (including features, aspects, variabilities
and commonalities in a given domain) from requirements.

Batory et. al. [9] models the components of distributed
simulations as aspects, via the help of DSLs and GenVoca PLAs.

A significant amount of work has been devoted to aspect-oriented
modeling for single systems, e.g., [6], [21], [41], [42], [43], and
[51].

However, none of the above work addresses the role of aspects in
the model-driven development of product lines in contrast to the
traditional OO approach, as we do here.

6. CONCLUSION
The work described here provides a preliminary comparison of
the OO and AO approaches in modeling crosscutting variabilities,
based on experience with a product line case study. Several
observations are made that may be helpful for future research.
Possible future work includes tools for resolving aspect conflicts,
more empirical evaluations of the two approaches, a rigid
weaving mechanism, and its implementation in an existing MDD
tool.

7. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under grants 0204139, 0205588 and 0541163.

8. REFERENCES
[1] Aldawud, O., Bader, A., and Elrad T. Weaving with

Statecharts. in the Aspect-Oriented Modeling with UML
workshop at the 1st Int’l Conf. on Aspect-Oriented Software
Development (Enschede, The Netherlands, 2002).

[2] Alves, V., Matos, P. Jr., and Borba, P. An Incremental
Aspect-Oriented Product Line Method for J2ME Game
Development in the Workshop on Managing Variabilities
Consistently in Design and Code at the 19th OOPSLA,
(Vancouver, Canada, 2004).

[3] Anastasopoulos, M., and Muthig, D., An Evaluation of
Aspect-Oriented Programming as a Product Line
Implementation Technology. in Software Reuse: Methods,
Techniques and Tools: 8th Int’l Conf., ICSR 2004 (Madrid,
Spain, 2004), Springer Berlin / Heidelberg, 141-156.

[4] Apel, S., and Batory, D.,When to Use Features and Aspects?
A Case Study. In Proc. GPCE 2006 (Portland, USA, 2006).

[5] Apel, S., Leich, T., and Saake, G., Aspectual Mixin Layers:
Aspects and Features in Concert. in the 27th ICSE.
(Shanghai, China, 2006), ACM Press, 122 – 131.

[6] Araújo, J., Whittle, J., and Kim, D. Modeling and
Composing Scenario-based Requirements with Aspects. in
the 12th IEEE International Requirements Engineering
Conference (Kyoto, Japan, 2004), IEEE Press, 58-67.

[7] Atkinson, C. et. al. Component-based Product Line
Engineering with UML. Addison-Wesley Professional, 2001.

[8] Baniassad, E. et. al. Discovering Early Aspects. IEEE
Software, 23, 1 (Jan. 2006), 61-70.

[9] Batory, D., et. al.. Achieving extensibility through product-
lines and domain-specific languages: a case study. ACM
Transactions on Software Engineering and Methodology, 11,
2 (April 2002), 191-214.

[10] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley
Professional, 2005.

[11] Clarke, S., and Baniassad, E. Aspect-oriented Analysis and
Design: The Theme Approach, Addison-Wesley, Upper
Saddle River, 2005.

[12] Clements, P., and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[13] Douglass, B. P. Doing Hard Time Developing Real-Time
Systems with UML, Objects, Frameworks and Patterns.
Addison-Wesley, 1999.

[14] Ellenbogen, K.A., and Wood M.A. Cardiac Pacing and
ICDs. Blackwell Publishing, Malden, 2005.

[15] Filman R. E., Elrad, T., Clarke, S., and Aksit, M. et. Aspect-
Oriented Software Development. Addison-Wesley
Professional, 2004.

[16] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[17] Garlan, D., and Notkin, D. Formalizing Design Spaces:
Implicit Invocation Mechanisms. in VDM '91: Formal
Software Development Methods, (Noordwijkerhout, The
Netherlands, 1991), Springer-Verlag, 31-44.

[18] Gomaa, H. Designing Software Product Lines with UML:
From Uses Cases to Pattern-Based Software Architectures.
Addison-Wesley, Boston, 2005.

[19] Griss, M. L., Implementing Product-line Features By
Composing Component Aspects. in the First International
Software Product Line Conference (Denver, USA, 2000).
Kluwer 2000, 271-289.

[20] Guidant Corporation Keeps Its Rhythm With Statement
MAGNUM, I-Logix, 2002. Retrieved August 7, 2006, from
Iowa State University: http://www.ilogix.com/pdf/success/
Statemate_GuidantCorporationKeepsItsRhythm.pdf.

[21] Jacobson, I., and Ng, P. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley Professional,
Upper Saddle River, 2004.

[22] Katara, M., and Katz, S. Architectural Views of Aspects. in
the 2nd Int’l Conf. on Aspect-oriented Software Development
(Boston, USA, 2003), ACM Press, 1-10.

[23] Kiczales, G. et. al., Aspect-Oriented Programming. in the
11th European Conference on Object-Oriented
Programming (Jyväskylä, Finland, 1997), Springer-Verlag,
220-242.

[24] Loughran, N., and Rashid, A., Framed Aspects: Supporting
Variability and Configurability for AOP. in the 8th
International Conference on Software Reuse (Madrid, Spain,
2004), Springer, 127-140.

[25] Loughran, N., Sampaio, A., and Rashid A., From
Requirements Documents to Feature Models for Aspect
Oriented Product Line Implementation. MoDELS 2005
International Workshop on MDD in Product Lines (Montego
Bay, Jamaica, 2005), Springer, 262-271.

[26] Liu, J., Lutz, R., and Thompson J, Mapping Concern Space
to Software Architecture: A Connector-Based Approach. in

ICSE 2005 Workshop on Modeling and Analysis of Concerns
in Software (St. Louis, USA, 2005), ACM SIGSOFT
Software Engineering Notes (Volume 30, Issue 4), 1 – 5.

[27] Liu, J., Dehlinger, J., and Lutz, R. Safety Analysis of
Software Product Lines using State-based Modeling. in the
16th IEEE International Symposium on Software Reliability
Engineering (Chicago, USA, 2005), IEEE Press, 21-35.

[28] McgGregor, J. and Korson, T. Understanding Object-
Oriented: A Unifying Paradigm. Communication of the
ACM, 33, 9 (Sept. 1990), 40-60.

[29] Model-Driven Software Development, May 2006.
Retrieved August 7, 2006, from Iowa State University:
http://www.mdsd.info/mdsd_cm/page.php?page=intro&id=5.

[30] Mukerji, J., and Miller, J. The MDA Guide v1.0.1. OMG
Papers on the MDA, June 2003. Retrieved August 7,
2006, from Iowa State University:
http://www.omg.org/docs/omg/03-06-01.pdf.

[31] Niemann, S. Executable Systems Design with UML 2.0.
OMG Whitepapers on UML, I-Logix, August 2004.
Retrieved August 7, 2006, from Iowa State University:
http://www.omg.org/news/whitepapers/
Executable_System_Design_UML.pdf

[32] Nuseibeh, B., Crosscutting Requirements. in the 3rd
International Conference on Aspect-oriented Software
Development (Lancaster, UK, 2004), ACM Press, 3-4.

[33] The Object Management Group (OMG), August 2006.
Retrieved August 8, 2006, from Iowa State University:
http://www.omg.org/.

[34] Pohl, K., Böckle, G., and van der Linden, F. J. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, Berlin, 2005.

[35] Prehofer, C. An Object-Oriented Approach to Feature
Interaction. in the 4th IEEE Workshop on Feature
Interactions in Telecommunications Networks and
Distributed Systems (Montréal, Canada, 1997), IOS Press,
313-325.

[36] Rajan, H. and Sullivan, K, Classpects: Unifying Aspect- and
Object-Oriented Language Design. in the 27th International
Conference on Software Engineering1(St. Louis, USA,
2005), The ACM Digital Library, 59 – 68.

[37] Schmidt, D. C. Guest Editor's Introduction: Model-Driven
Engineering. IEEE Computer 39, 2 (Feb. 2006), 25-31.

[38] Rashid, A. et. al. Modularization and Composition of
Aspectual Requirements. in the 2nd International Conference
on Aspect-oriented Software Development (Boston, USA,
2003), ACM Press, 11-20.

[39] Saleh, M., and Gomaa, H., Separation of concerns in
software product line engineering. in ICSE 2005 Workshop

on Modeling and Analysis of Concerns in Software (St.
Louis, USA, 2005), ACM SIGSOFT Software Engineering
Notes (Volume 30, Issue 4), 1 – 5.

[40] Shomrat, M., and Yehudai, A. Obvious or not? Regulating
architectural decisions using aspect-oriented programming.
in the 1st International Conference on Aspect-oriented
Software Development (Enschede, The Netherlands, 2002),
ACM Press, 3-9.

[41] Sillito, J., Dutchyn, C., Eisenberg, A., and K. DeVolder. Use
case level pointcuts. In Proc. ECOOP 2004, (Oslo, Norway,
2004).

[42] Stein, D., Hanenberg, S., and Unland, R., Position Paper on
Aspect-Oriented Modeling: Issues on Representing
Crosscutting Features. in the 3rd International Workshop on
Aspect-Oriented Modeling (Boston, USA, 2003).

[43] Stein, D., Hanenberg, S., and Unland, R., On Representing
Join Points in the UML. in the 2nd International Workshop
on Aspect-Oriented Modeling with UML (Dresden, Germany,
2002).

[44] Sullivan, K., and Notkin, D. Reconciling Environment
Integration and Software Evolution. ACM Transaction on
Software Engineering and Methodology, 1, 3 (July 1992),
229-268.

[45] Sutton, S.M., and Rouvellou, I. Modeling of Software
Concerns in Cosmos. in the 1st International Conference on
Aspect-oriented Software Development (Enschede, The
Netherlands, 2002), ACM Press, 127-133.

[46] Svahnberg, M., van Gurp, J., and Bosch, J. A taxonomy of
variability realization techniques: Research Articles.
Software-Practice & Experience, 35, 8 (July 2005), 705-754.

[47] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. Jr., N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. in 21st Int’l Conf. on Software Engineering (Los
Angeles, USA, 1999), ACM Press, 107-119.

[48] Webber, D., and Gomaa, H. Modeling Variability in
Software Product Lines with the Variation Point Model.
Science of Computer Programming, 53, 3 (Dec. 2004), 305-
331.

[49] Weiss, D. M., and Lai, C. T. R. Software Product Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[50] Xie, T., and Zhao, J. A Framework and Tool Supports for
Generating Test Inputs of AspectJ Programs. in the 5th
International Conference on Aspect-oriented Software
Development (Bonn, Germany, 2006), ACM Press, 190-201.

[51] Xu, D., and Xu, W. State-based Incremental Testing of
Aspect-oriented Programs. in the 5th International
Conference on Aspect-oriented Software Development
(Bonn, Germany, 2006), ACM Press, 180-189.

