
An Automatic Actors to Threads Mapping
Technique for JVM-based Actor Frameworks

Ganesha Upadhyaya
Iowa State University, USA
ganeshau@iastate.edu

Hridesh Rajan
Iowa State University, USA

hridesh@iastate.edu

Abstract
Actor frameworks running on Java Virtual Machine (JVM)
platform face two main challenges in utilizing multi-core ar-
chitectures, i) efficiently mapping actors to JVM threads, and
ii) scheduling JVM threads on multi-core. JVM-based actor
frameworks allow fine tuning of actors to threads mapping,
however scheduling of threads on multi-core is left to the
OS scheduler. Hence, efficiently mapping actors to threads
is critical for achieving good performance and scalability. In
the existing JVM-based actor frameworks, programmers se-
lect default actors to threads mappings and iteratively fine
tune the mappings until the desired performance is achie-
ved. This process is tedious and time consuming when build-
ing large scale distributed applications. We propose a tech-
nique that automatically maps actors to JVM threads. Our
technique is based on a set of heuristics with the goal of bal-
ancing actors computations across JVM threads and reduc-
ing communication overheads. We explain our technique in
the context of the Panini programming language, which pro-
vides capsules as an actor-like abstraction for concurrency,
but also explore its applicability to other approaches.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming ; D.2.7 [Distribu-
tion, Maintenance, and Enhancement]: Portability ; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Processors]: Code generation, Optimization

General Terms Experimentation, Measurement, Perfor-
mance, Scalability

Keywords Actors, Panini programming language, Capsule-
oriented Programming, Implicit Concurrency, Multi-core,
Java, JVM, Thread Mapping, CPU Utilization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AGERE! 2014, October 20, 2014, Portland, OR, USA..
Copyright c© 2014 ACM 978-1-4503-2189-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2687357.2687367

1. Introduction
Multicore and many-core systems have become the indus-
try standards. The number of cores on these systems is
rapidly increasing. Sequential programs are ill-suited to run
on multicore systems as they do not utilize the available
cores. Many concurrent and parallel programming models
have emerged to utilize cores effectively. One such model is
the Actor model [8] which has self contained concurrently
runnable actors that communicate via message passing. Ac-
tor model exposes parallelism by design. The parallelism in
actor systems stems from being able to execute multiple ac-
tors in parallel. The popularity of actor model has influenced
programmers to build large distributed applications that per-
form data, task and pipeline parallelism at fine and coarse
granularity.

However, for utilizing the underlying multicore, actors
need to be mapped to cores carefully. Mapping is a two
step process: 1) actors threads mapping and 2) threads
 cores mapping (or scheduling). Often, the actor language
runtime handles both steps by creating required threads and
scheduling them on different cores using an efficient actor to
core mapping technique. However, in JVM-based actor lan-
guages, actors to threads mapping is performed by program-
mers and JVM leaves scheduling of threads on multicore
to the OS scheduler. Programmers select default actors to
threads mappings and iteratively fine tune the mappings un-
til the desired performance is achieved. This process is easy
for simple or embarrassingly parallel applications, however
for applications that have sub-linear performance, improving
the application performance is tedious and time consuming
[21].

It can be argued that an optimal solution for actors
to threads mapping using brute-force technique cannot be
found in polynomial time (similar to the task mapping prob-
lem [21]). For this purpose, we propose a novel heuristic-
based approach that automatically maps actors to threads at
compile time. Our heuristics use actor characteristics such
as lifetime of the actor, amount of computation, nature of
computation, and nature of interaction with other actors in
the system, etc. The central goal of the heuristics is to map
actors to threads in a way that balances actor computational

29

workloads and reduces communication overheads. The out-
come of applying the proposed heuristics in a systematic
manner results in one of the four different execution poli-
cies (Thread, Task, Sequential, Monitor) for actors. The ex-
ecution policy defines how the messages are processed. In
thread execution policy messages are processed by a ded-
icated JVM thread. In task execution policy messages are
processed by a shared thread and in sequential/monitor case
the actor that sends message itself processes the message at
the receiver actor. By means of assigning different execu-
tion policies to actors at compile-time we achieve actors to
threads mappings.

We propose that programmers use our heuristic-based
mapping technique for initially mapping actors to threads in
place of default mapping technique. We believe that by using
our heuristic-based mapping technique programmers time
and efforts to arrive at initial optimal mapping are saved.

We have realized our technique in the Panini program-
ming language [1, 20]. Panini programming language pro-
vides an abstraction for implicit concurrency called cap-
sules, which are a flavor of actors for sequentially trained
programmers1. Even though, our technique is well-suited for
Panini’s capsules where programmers can concentrate their
efforts in application development rather than understanding
and improving concurrent execution, it is applicable to any
JVM-based actor frameworks. Our evaluation over a wide
range of actor programs shows that our heuristic-based map-
ping achieves on average 50% improvement in program run-
time over default-thread and default-task mappings.

2. Related Work
Actor frameworks such as Akka [15], Kilim [25], Scala Ac-
tors [16], Jetlang [5], ActorFoundry [10], SALSA [12] and
Actors Guild [2] allow programmers to map their actors to
JVM threads and fine tune their application using schedulers
and dispatchers. In Akka, dispatchers are responsible for
actor scheduling. Akka provides four kinds of dispatchers:
default, pinned, balancing, and calling thread. The default
dispatcher is an event-based single queue implementation
backed by a thread-pool of configurable size. In pinned dis-
patcher each actor has it own OS thread. The balancing dis-
patcher employs event-based approach and uses single mail-
box and performs load-balancing. Finally, the calling thread
dispatcher has no thread associated with it and the thread of
the message sender executes the message. Kilim is an actor
framework for Java. It provides lightweight event-based ac-
tors. Kilim scheduler is a bundle composed of a thread-pool,
a scheduling policy and collection of runnable actors. By de-
fault, actors in the collection are scheduled in a round-robin
fashion. Scala Actors allow creation of thread-based and
event-based actors. Thread-based actors are assigned dedi-
cated JVM threads, whereas event-based actors share JVM

1 Main promise of capsules is that they can enable modular reasoning about
concurrent programs, but that direction is explored elsewhere [11].

threads associated with the task-pool that processes event-
based actor messages. For the purpose of fair scheduling,
task-pool uses round-robin scheduling. ActorFoundry inter-
nally uses kilim and Actors Guild follows similar strategy as
Scala Actors. SALSA allows creation of heavy-weight and
light-weight actors using Stage. Stage is a bundle composed
of a single message queue and a JVM thread. Heavy-weight
actors are assigned individual stages and light-weight actors
share stages. However, mapping actors to stages is left to the
application developers.

In all these actor languages and frameworks, applica-
tion developers define actors to threads mappings and fine
tune the mapping until the desired performance is achieved.
Whereas, our technique performs automatic mapping of ac-
tors to threads.

Several works on performance improvement of non-JVM
actor frameworks exists. Francesquini et al.[13] proposed a
technique implemented in Erlang [27] runtime that places
Erlang actors on multi-core efficiently. Their technique
showed that by placing frequently communicating actors
(hub-and-affinity) together, over two times improvement in
the application performance can be achieved. However, pro-
grammers need to identify hub and its affinity actors and an-
notate the program for runtime to perform the desired map-
ping. Our technique uses many more actor characteristics
along with hub-and-affinity and performs essential program
analyses to automatically determine the mappings.

Mapping application on to multi-core is well studied
problem. The application is represented as task graph and the
mapping problem is defined as how to map different tasks
to CPU cores to minimize application runtime. A recent sur-
vey by Singh et al. [22] lists different static, dynamic and
hybrid techniques that map task graph to multi-core with
performance, energy consumption and temperature as dif-
ferent goals of determining optimal mapping. Researchers
have explored the problem of mapping application tasks that
communicate via both message passing and shared mem-
ory on homogeneous and heterogeneous cores [24]. These
techniques are not directly applicable to JVM-based actor
frameworks, because threads to cores mapping is left to OS
scheduler and only actors to threads mapping can be opti-
mized. However, actors to threads mapping technique can
utilize solutions proposed for general task graph mapping
problem. In our heuristic-based mapping technique, we uti-
lize actor characteristics and interaction behaviors similar
to task characteristics and task graph in general task graph
mapping problem.

Note that the mapping problem in actor programs is dif-
ferent from the mapping problem in general multi-threaded
programs. In multi-threaded programs, the mapping problem
is defined as scheduling and load-balancing of threads on
multi-cores. This also involves binding of threads to phys-
ical cores. However in actor programs, the mapping prob-
lem is two-fold: mapping actors to threads and scheduling

30

of threads on multi-cores. Tousimojarad et al. [26]’s work
proposes efficient strategies for mapping threads to cores for
OpenMP multi-threaded programs. When compared to this
work, our technique maps actors to threads and not threads
to cores. Threads to cores mapping is handled by OS sched-
uler in JVM-based actor frameworks.

3. Actors to JVM Threads Mapping Problem
Traditionally actors tend to have a dedicated thread that pro-
cesses messages in their queue. As the popularity of actor
programming paradigm grows, actor languages are used to
develop large scale distributed applications. These applica-
tions spawn a large number of actors and hence dedicating a
thread for every actor is not scalable. Actor languages have
realized this limitation and allowed programmer to share a
thread across multiple actors. However, it is the responsibil-
ity of the programmer to correctly map actors to threads.

Figure 1. BenchErl serialmsg actor communication graph.

Figure 2. Panini histogram actor communication graph.

Figure 3. Performance of default-thread and default-task
mappings for BenchErl serialmsg and Panini histogram
benchmark programs (x-axis: 2, 4, 8, and 12-core settings
and y-axis: runtime in seconds).

To illustrate the problem consider mapping actors to
threads for two actor programs shown in Figure 1 and Fig-
ure 2. Our first program shown in Figure 1 is the serialmsg

program from BenchErl benchmark suite [9]. This bench-
mark is about message proxying through a dispatcher and
spawns a certain number of receivers, one dispatcher, and a
certain number of generators. The dispatcher forwards the
messages that it receives from generators to the appropri-
ate receiver. Each generator sends a number of messages to
a specific receiver. The second program shown in Figure 2
is the histogram program from Panini [1, 20]. The goal of
this problem is to count the number of times each ASCII
character occurs on a page of text.

For deciding initial actors to threads mapping program-
mers can use default-thread or default-task mappings. In
default-thread mapping, every actor instance is assigned a
dedicated thread and in default-task mapping, actors are
mapped to a taskpool containing fixed number of threads
(usually equals to number of CPU cores). Figure 3 shows
performance of two benchmark programs on 2, 4, 8, and
12-core machines. The two main concerns are visible in the
performance results. These are i) performance is not consis-
tent across programs indicating that a single default mapping
strategy (thread or task) does not work across programs, and
ii) performance degrades upon adding more cores.

Now, the programmer can use default-thread or default-
task mappings, profile the default mappings and iteratively
fine tune the actors to threads mappings. However, when
multiple actors are mapped to a JVM thread, profiling the
thread and understanding the bottlenecks is difficult. We be-
lieve that some aspects of the actor model can be directly
used to decide the initial actors to threads mappings. For in-
stance, in the illustrative program shown in Figure 1, gener-
ators and receivers can be assigned to single thread to avoid
message passing overheads. For addressing the scalability
problem, choosing the right number of JVM threads plays an
important role. The solution of limiting number of threads
works for applications that have smaller number of actors.
The challenge remains for applications with large number of
actors. Hence the fundamental problem is finding an initial
optimal mapping that has consistent performance and scales
well when additional cores are allocated.

3.1 Problem Formulation
We formulate the problem of mapping actors to JVM threads
as selecting different execution policies for actors in the
system. Execution policy defines how actor messages are
processed. We define four different execution policies as
follows,

• THREAD, in this execution policy, a dedicated thread is
assigned for processing the messages from the actor’s
message queue and executing the corresponding behavior
(works similar to akka’s pinned dispatcher).

• TASK, in this execution policy, the actor messages are
processed by the shared thread of the taskpool. The
taskpool may contain one or more actors that abide to
TASK execution policy. The order in which the messages

31

from different actors message queue has to be processed
could vary. One simple policy is to process one message
from each actor to avoid starvation of other actors.

• SEQ/MONITOR, in case of SEQ and MONITOR, the
policy is that the calling actor that sends the message
needs to execute the defined behavior at the callee actor
that received the message (works similar to akka’s calling
thread dispatcher).

Actor communication graph (ACG). Given an actor
program, actor communication graph defines various actors
in the program and the interaction between them. ACG is a
directed graph G(V,E) where,

• V = A0,A1, ...,An is a set of nodes, each representing an
actor.

• E is a set of edges (Ai,A j) for all i,j such that there is
communication from Ai to A j.

Mapping function. Given actor program and ACG we
define actors to threads mapping as assigning execution poli-
cies from the set of possible execution policies, M(P× ACG)
7→ EP where,

• P is actor program,
• ACG is actor communication graph and,
• EP = {THREAD, TASK, SEQ, MONITOR}.

4. Approach
In this section we describe our heuristic-based mapping
technique that assigns execution policies to actors. We first
describe different aspects of actor programs that are relevant
for our heuristics and formulate them as a Actor Character-
istics Vector (cVector). We then describe a set of heuristics
that given cVector predicts the execution policy. Finally, we
describe our mapping function followed by a set of examples
illustrating the application of our mapping technique.

4.1 Analyzing Applications
Some aspects of the actor applications can be directly used
to decide the execution policies for actors. The knowledge
of the actor behavior and their communication graph that
defines the relationship between the actors can be easily
extracted. This subsection presents several of these aspects.

• blocking, an actor has blocking behavior if it has exter-
nally blocking behaviors using I/O, socket or database
blocking primitives.

• stateful/stateless, actors may have state variables that are
modified in multiple actor behaviors.

• inherent parallelism, actors may use blocking send prim-
itives and receive results or use asynchronous send prim-
itives. Actors may or may not require the results immedi-
ately.

• computationally intensive, actors may have different
computational requirements.

• communication behavior (or message rate), actor system
may contain leaf actors that do not send messages to other
actors, or routing actors that sends exactly one message
for every message it receives, or broadcast actors that
sends multiple messages for every message it receives.

• hub-affinity, some actors communicates more with a set
of actors than other actors in the system. These actors
form hub-affinity group.

• data rate, some actors in the system may send/receive
high volume of data.

• contention, some actors may have a tendency to receive
messages from multiple competing actors.

4.2 cVector: Actor Characteristics Vector
Based on the different aspect about actor behaviors and their
communication graph every actor is assigned a Characteris-
tics vector. The Characteristics vector has five fields,

〈〈 BLK, STATE, PAR, COMM, CPU 〉〉

1. BLK = {true, false} represents blocking behavior,

2. STATE = {true, false} represents stateful/stateless behav-
ior,

3. PAR = {low, med, high} represents inherent parallelism
and values are assigned as follows,
• low, if actor sends a synchronous message and waits

for the result or consumes the result right away,
• high, if actors sends an asynchronous message and

does not require result,
• med, otherwise

4. COMM = {low, med, high} represents communication
behavior and it is determined as follows,
• low, does not send messages to other actors,
• high, sends more than one message to the connected

actors,
• med, sends exactly one message to the connected ac-

tor,

5. CPU = {low, high}, represents computational workload
of the actor and it is determined as follows,
• high, when recursive, loops with unknown bounds,

makes high cost library calls,
• low, otherwise

Actor characteristics vector is computed using actor pro-
gram (P) and actor communication graph (ACG) by perform-
ing a number of program analyses. For determining block-
ing, we look for usage of external blocking primitives. We
perform intra-procedural analysis of actor behavior defini-
tions to determine stateful/stateless behavior, inherent paral-

32

Figure 4. Flow diagram of our mapping function that assigns actors one of the four execution policies.

lelism (PAR), communication behavior (COMM) and com-
putational requirement (CPU). We mark an actor stateful if
more than one actor behavior accesses any of its state vari-
able. Both PAR and COMM requires analysis of statements
that involves sending messages. Note that in determining
various fields of cVector the program analyses requires ac-
tor definition (actor code) and the communication behaviors
of outgoing messages rather than incoming messages. This
requirement helps our analyses to be less-strict about avail-
ability of complete ACG at compile time.

4.3 Mapping Heuristics
Earlier we presented four different execution policies that
can be assigned to actors. This section examines a number of
heuristics for predicting the execution policy. The heuristics
make use of the actor characteristics vector cVector.

Blocking Actors Heuristics. This heuristic states that
any actor that has external blocking behavior, as represented
by BLK field in cVector, should be assigned thread (Th)
execution policy. Any other execution policy for blocking
actors would lead to blocking of the executing thread and
may lead to actor starvation and deadlocks. The cVector for
such actors is <true,_,_,_,_>. If BLK is true, other fields of
cVector are ignored in making the execution policy decision.

Heavy Actors Heuristics. This heuristic states that any
actor that is non-blocking with high inherent parallelism,
high communication and high computation should be as-
signed thread execution policy. The cVector of such an actor
is <false,_,high,high,high>. The rationale behind this decision is
that the assigned thread can perform its CPU intensive com-
putations in parallel with other threads without voluntarily
interruption.

HighCPU Actors Heuristics. Actors that have high in-
herent parallelism with high CPU needs but low communica-
tion frequency are assigned task (Ta) execution policy. These
actors have cVector <false,_,high,low,high>. By assigning task
execution policy, these actors can utilize any load-balancing
strategies applied to the task-pool.

LowCPU Actors Heuristics. LowCPU actors that have
characteristics vector cVector <false,_,high,low,low> should be
assigned monitor (M) execution policy. These actors do not
need special attention and hence are processed by the calling
actor (actor that sends messages).

Hub Actors Heuristics. This heuristic states that hub ac-
tors should be assigned task (Ta) execution policy. Hub ac-
tors are represented using cVector either <false,_,high,high,low>

or <false,_,low/med,high,high>. The rationale behind this decision
is that affinity actors (actors that hub actor communicates of-
ten) can be executed by the shared thread that is executing
the hub actor task in the task-pool.

Affinity Actors Heuristics. This heuristic states that
affinity actors should be assigned monitor (M) execution
policy. Affinity actors have following cVector <false,_,low/med

,low/med,low>. By assigning monitor execution policy, the hub
actor (of these affinity actors) is forced to execute the affinity
actors.

Master Actors Heuristics. This heuristic states that
master actors should be assigned thread (Th) execution pol-
icy. The cVector of master actors is <false,_,low/med,high,low>.
Master actors have the property that they delegate the work
to slave actors and often wait for the result. Hence, by as-
signing a dedicated thread it does not block the execution of
slave actors.

33

Slave Actors Heuristics. This heuristic states that slave
actors should be assigned task (Ta) execution policy. The
cVector of slave actors is <false,_,low/med,low/med,high>. Simi-
lar to HighCPU actors these actors can utilize any load-
balancing strategies applied to the task-pool.

4.4 Mapping function
Figure 4 describes the flow of our mapping function. For
every actor in the system, mapping function assigns one of
the four execution policies. By following the flow it is easy
to see that the strategy is complete. Because, every actor with
a cVector is assigned an execution policy. It can also be seen
that actors are never assigned multiple execution policies.

4.5 Examples
We have implemented our technique in Panini Capsules (an
actor flavor), hence we first briefly describe Panini Cap-
sules. We then present several example panini programs and
demonstrate the application of our mapping technique to de-
cide execution policies. The panini source code of these pro-
grams is available in [6].

4.5.1 Panini Capsules
Capsules are an actor-like abstraction implemented in the
programming language Panini [1, 11, 20]. Figure 5 presents
an example HelloWorld program in this language. In this
program there are three actors (capsules) HelloWorld, Greeter
and Console and they are connected as HelloWorld→ Greeter→
Console.

1 signature Stream { //A signature declaration
2 void write(String s) ;
3 }

5 capsule Console () implements Stream { //Capsule declaration
6 void write(String s) { // Capsule procedure
7 System.out.println(s) ;
8 }
9 }

11 capsule Greeter (Stream s) { //Requires an instance of Stream to work
12 String message = "Hello World!"; // State declaration
13 void greet() { // Capsule procedure
14 s.write ("Panini: " + message); // Inter−capsule procedure call
15 long time = System.currentTimeMillis();
16 s.write ("Time is now: " + time);
17 }
18 }

20 capsule HelloWorld() {
21 design { // Design declaration
22 Console c; // Capsule instance declaration
23 Greeter g; // Another capsule instance declaration
24 g(c) ; // Wiring, connecting capsule instance g to c
25 }
26 void run() { // An autonomous procedure
27 g.greet() ; // Inter−capsule procedure call
28 }
29 }

Figure 5. HelloWorld Program in Panini

In Panini’s programming model, capsules are indepen-
dently acting entities. Capsules provide interface to com-
municate to other capsules via capsule procedures. When a

capsule wants to communicate with other capsule it does so
using inter-capsule procedure calls. In the HelloWorld pro-
gram described above, g.greet() in line 27 is an inter-capsule
procedure call between HelloWorld capsule and Greeter cap-
sule. If a capsule requires return result of inter-capsular call
then the caller receives a future as a proxy for the actual
return value (void return values are allowed). If the value
is not used immediately, the caller can continue execution.
Inter-capsule procedure calls are processed using message
passing mechanism similar to actors. There are two kinds of
capsules: those that define autonomous behavior by declar-
ing a run procedure, and those that respond to request from
other capsules.

4.5.2 BenchErl Bang
Bang benchmark simulates many-to-one message passing.
It spa-wns one receiver and multiple senders that flood the
receiver with messages. There are 440 instances of Sender and
one instance of Receiver. Each Sender sends 440 messages to
Receiver. The actor communication graph (ACG) is shown in
Figure 6.

Figure 6. ACG of BenchErl Bang program.

Sender capsule has the characteristics vector (cv): <false,_,

high,high,low>, because it is non-blocking, it has high inherent
parallelism as inter-capsular call does not expect the results,
it highly communicates with Receiver capsule and it does not
have CPU intensive computation in it. Hence, by applying
our mapping function shown in Figure 4, we determine that
Sender capsule instances should be assigned Task execution
policy. The cV for Receiver is <false,_,low,low,low> and by fol-
lowing the mapping strategy, it is assigned Monitor execu-
tion policy. A general intuition is to assign Task execution
policy to Receiver, because it processes large number of mes-
sages from Sender capsules. However, if assigned Task ex-
ecution policy, the thread processing Receiver task will en-
counter large overhead due to excessive communication and
low computation behavior of Receiver. By assigning Monitor
execution policy to Receiver this overhead can be reduced.

4.5.3 FileSearch Program from Actor Collections
FileSearch program performs document indexing and search-
ing. The different capsules in this program are: FileCrawler

, FileScanner, Indexer and Searcher. FileCrawler recursively visits
each sub-directory in the input file path and sends a message
to FileScanner whenever it finds a file. FileScanner processes

34

the file sent by the FileCrawlerand asks next available Indexer

from the list of indexers to index the file. Indexer performs
hash-based indexing and stores the result. Upon visiting ev-
ery file in the directories/sub-directories of the input path
FileCrawler notifies FileScanner and FileScanner notifies Searcher.
Searcher takes search string from the command-line and re-
quests each Indexer to look for the search string in their stored
results and return the file path if found.

Capsules cVector and the execution policies are shown
in the table below. The ACG for this program is shown in
Figure 7.

Capsule cVector Policy
FileCrawler <false,_,high,high,high> Thread
FileScanner <false,_,high,high,low> Task
Indexer <false,_,low,low,low> Monitor
Searcher <true,_,_,_,_> Thread

Figure 7. Actor Collection FileSearch

FileCrawler has cVector <false,_,high,high,high> because it per-
forms heavy recursive task, hence it is assigned Thread ex-
ecution policy. FileScanner communicates highly with a set of
indexers and acts as a delegator. The cVector of FileScanner

is <false,_,high,high,low> and it is assigned Task execution pol-
icy. There are eleven Indexer capsule instances with cVector
<false,_,low,low,low>. These are leaf actors with low computa-
tions, hence are assigned Monitor policy. Searcher blocks un-
til FileScanner notifies to begin searching. Since it is a block-
ing capsule, we assigned Thread execution policy to it. It is
important that FileCrawler is assigned Thread execution pol-
icy, because it requires a dedicated thread to perform un-
interrupted processing. Assigning Thread execution policy
to blocking Searcher capsule ensures that it does not leads to
the starvation of other actors. Our decision to assign Task
execution policy to FileScanner is critical to further improve
the performance of the program. FileScanner in this program
can be a performance bottleneck, because it receives large
number of requests from FileCrawler and it should delegate the
work to Indexer capsules without delaying. Also FileScanner is a
stateless capsule and its requests can be simultaneously pro-
cessed by multiple threads.

4.5.4 BenchErl Serialmsg
BenchErl serialmsg is about message proxying through a
dispatcher. The benchmark spawns a certain number of re-
ceivers, one dispatcher, and a certain number of genera-
tors. The dispatcher forwards the messages that it receives
from generators to the appropriate receiver. Each generator
sends a number of messages to a specific receiver. This pro-
gram has 120 instances of Generator capsule, 120 instances
of Receiver capsule and one instance of Dispatcher capsule. The
table below lists cVector and assigned execution policy for
various capsules in this program. The ACG for this program
is shown in Figure 8.

Capsule cVector Policy
Generator <false,_,high,high,low> Task
Dispatcher <false,_,low,low,low> Monitor
Receiver <false,_,low,low,low> Monitor

Figure 8. BenchErl Serialmsg

The communication between each Generator with its Receiver

is high. Hence, for tightly binding them we assign Mon-
itor execution policy to Dispatcher and Receiver so that the
thread that is processing Generator will also process Receiver

. If Dispatcher is assigned Task execution policy, it leads to the
performance bottleneck, because it receiver large number of
messages from Generator capsules and it should immediately
route the messages to appropriate receivers.

5. Evaluation
5.1 Benchmark selection
We have selected actor programs that have data, task, and
pipeline parallelism in them at fine and coarse granularity
levels. These applications show super-linear, linear and sub-
linear speedups and they may or may not scale well when
additional cores are allocated to them. Our idea is to eval-
uate a wide range of actor programs rather than be repet-
itive. We have selected representative programs from Er-
lang BenchErl [9] suite, Computer Language Benchmarks
Game [3], Actor Collections [4], StreamIt Benchmarks [7],
JavaGrande [23] and Panini Examples [1, 20]. While select-
ing the representative programs from different benchmark

35

B Capsule cVector Policy

bang Sender <false,_,high,high,low> Task
Receiver <false,_,low,low,low> Monitor

ehb
Group <false,_,high,high,low> Task
Sender <false,_,high,high,low> Task
Receiver <false,_,low,low,low> Monitor

mbrot Worker <false,_,high,high,low> Task
Mandel <false,_,low,low,low> Monitor

serialmsg
Generator <false,_,high,high,low> Task
Dispatcher <false,_,high,low,low> Monitor
Receiver <false,_,low,low,low> Monitor

Figure 9. Details of BenchErl benchmark programs.

suites, we have included programs that consists of differ-
ent types of actors and their interactions are not straightfor-
ward. We have translated a total of fourteen different actor
programs to Panini for evaluation. Our rewriting translated
only concurrency-related code and structure from the origi-
nal programs and did not alter or optimize code not related to
concurrency. We now list the details about each benchmark
program such as capsules, cVectors and execution policies
that are assigned to capsules by our mapping technique. The
details about the mappings and its impact on the program
performance will be discussed in §5.3.

5.1.1 BenchErl Benchmarks
BenchErl is a publicly available scalability benchmark suite
for applications written originally in Erlang. Unlike other
benchmark suites, which are usually designed to report a
particular performance point, BenchErl aims to assess scala-
bility, i.e., a set of performance points that show how an ap-
plication’s performance changes when additional resources
(e.g. CPU cores, schedulers, etc.) are added. We have se-
lected bang, ehb, mbrot and serialmsg programs for evalu-
ation. The description of actors (capsules) and the assigned
execution policies is shown in Figure 9.

5.1.2 Computer Language Benchmarks Game
This suite of programs is used to compare the perfor-
mance of different languages and libraries. We have se-
lected fannkuchredux, fasta and knucleotide programs. The
description of actors (capsules) and the assigned execution
policies is shown in Figure 10.

5.1.3 Programs from Actor Collections
This suite lists a collection of Akka/Scala actor applica-
tions in the Github repository. We have selected FileSearch,
ScratchPad and PolynomialIntegral actor programs. The de-
scription of actors (capsules) and the assigned execution
policies is shown in Figure 11.

5.1.4 StreamIt Programs
The set of benchmarks are available with StreamIt software
version 2.1.1. Most benchmarks are from the signal process-

B Capsule cVector Policy

Fannkuchred fannkuchred <false,_,high,low,high> Task
Collector <false,_,low,low,low> Monitor

fasta

RandomFasta <false,_,low,high,high> Task
RepeatFasta <false,_,low,high,high> Task
FloatProbFreq <false,_,low,low,low> Monitor
Writer <false,_,low,low,low> Monitor

Knucleotide
SequenceGen <false,_,low,low,high> Thread
Nucleotide <false,_,low,low,high> Task
Collector <false,_,low,low,low> Monitor

Figure 10. Details of CLBG benchmark programs.

B Capsule cVector Policy

FileSearch

FileCrawler <false,_,high,high,high> Thread
FileScanner <false,_,high,high,low> Task
Indexer <false,_,low,low,low> Monitor
Searcher <true,_,_,_,_> Thread

ScratchPad

FilesystemWalker <false,_,high,high,high> Thread
LocAnalyser <false,_,high,high,low> Task
LocCounter <false,_,high,low,high> Task
Accumulator <false,_,high,low,low> Monitor
ResultAccumulator <false,_,low,low,low> Monitor

Polynomial
DelegateActor <false,_,low,low,low> Monitor
DispatcherActor <false,_,high,high,low> Task
ComputerActor <false,_,low,low,low> Monitor

Figure 11. Details of Actor Collections benchmarks.

B Capsule cVector Policy

B
ea

m
Fo

rm
er

AnonFilter_a1 <false,_,high,low,low> Monitor
AnonFilter_a0 <false,_,high,low,low> Monitor
InputGenerate <false,_,high,low,high> Task
CoarseBeamFirFilter <false,_,high,low,high> Task
BeamFirFilter <false,_,high,low,high> Task
AnonFilter_a3 <false,_,high,high,low> Monitor

D
C

T

FileReader <true,_,_,_,_> Thread
iDCT8x8_ieee <false,_,high,low,low> Monitor
iDCT_2D_reference_fine <false,_,high,low,low> Monitor
AnonFilter_a0 <false,_,high,low,low> Monitor
iDCT_1D_Y_reference_fine <false,_,high,low,low> Monitor
YSplitter <false,_,high,high,low> Task
iDCT_1D_reference_fine <false,_,high,low,high> Task
iDCT_1D_X_reference_fine <false,_,high,low,low> Monitor
FileWriter <false,_,low,low,low> Monitor

Figure 12. Description of various capsules, their respective
cVectors and assigned execution policies for Streamit Beam-
former and DCT benchmarks.

ing domain. We have selected BeamFormer and DCT as two
representative applications. The description of actors (cap-
sules) and the assigned execution policies is shown in Fig-
ure 12.

36

5.1.5 RayTracer from JavaGrande
This benchmark measures the performance of a 3D ray-
tracer. The description of various capsules, their respective
cVectors and assigned execution policies are shown in table
below.

Capsule cVector Policy
Runner <false,_,low,high,low> Thread
RayTracer <false,_,low,low,high> Task

5.1.6 Histogram from Panini Examples
This actor program implements classic histogram problem.
The goal of this problem is to count the number of times
each ASCII character occurs on a page of text.

Capsule cVector Policy
Reader <true,_,_,_,_> Thread
Bucket <false,_,high,low,low> Monitor
Printer <false,_,low,low,low> Monitor

5.2 Methodology
We compare our heuristic-based mapping technique against
default thread and default task mapping techniques. The
rationale behind comparing against default thread map-
pings is that most actor languages and frameworks support
threaded actors such that programmers can debug/profile
their threaded actor program to fine tune the performance.
The default task mappings are supported for event-based
programming of actors. We measure the runtime of pro-
grams for three different mappings when steady-state perfor-
mance is reached. Following the methodology of Georges et
al.[14], steady-state performance is reached when the coef-
ficient of variation of the most recent three iteration times
of a benchmark fall below 0.02. We compare the execution
time for each benchmark program for the three mapping
strategies. We also measure the performance of three dif-
ferent mappings on 2, 4, 8, and 12- cores settings (Linux
taskset utility is used for altering core settings on 12-core
system). The experiments are conducted on 12-core system
(2 Six-Core AMD Opteron R© 2431 Processors) with 24GB
of memory running the Linux version 3.5.5 and Java version
1.7.0_06. A Java VM size of 2GB is sufficient to run all of
our experiments.

5.3 Performance and Scalability
For comparing the performance of our heuristic-based map-
ping against default-thread and default-task mappings, we
define following two metrics:

• Ith is the improvement over default-thread mapping. It is
the percentage reduction in runtime over default-thread
mappings, and

• Ita is the improvement over default-task mapping. It is the
percentage reduction in runtime over default-task map-
pings.

We compute Ith and Ita for each program on 2, 4, 8, and
12 core settings. Figure 13 shows the results. We also com-
pute average Ith and Ita to determine overall improvement
of heuristic-based mapping over default-thread and default-
task mapping.

Results. Over fourteen evaluated benchmarks, average
Ith is 51% and average Ita is 50%. Average Ith and average
Ita on different core settings is shown in table below.

#cores Ith Ita
2 49% 50%
4 51% 50%
8 51% 51%

12 53% 50%

Outliers. Mainly for three programs our heuristic-based
mapping technique achieved small or no improvements.
These programs are, fannkuchredux (Ith: 3% & Ita: 1%),
RayTracer (Ith: -5% & Ita: 10%), and dct (Ith: 3% & Ita:
13%). On the other hand, our technique achieved large im-
provements for five programs. These programs are, bencherl
mbrot (Ith: 95% & Ita: 95%), bencherl serialmsg (Ith: 70%
& Ita: 65%), polynomialintegral (Ith: 72% & Ita: 72%), fasta
(Ith: 85% & Ita: 77%), and histogram (Ith: 91% & Ita: 99%).
We will now discuss these outliers in detail along with other
interesting results.

Analysis. For fourteen evaluated benchmarks on aver-
age 50% improvement over default mappings suggests that
our heuristic-based mapping could be used as a better initial
mapping strategy than default-thread and default-task map-
pings. On average 50% improvement on various core set-
tings indicates that our heuristic-based mapping is consistent
across machines with different resource (CPU cores) avail-
abilities.

Our heuristic-based mapping technique achieved small
improvements for three programs (RayTracer, fannkuchre-
dux, and DCT). These programs are mainly data-parallel
applications with embarrassingly parallel behavior. The re-
sults support our earlier intuition that for embarrassingly
parallel applications it is easy to determine actors to threads
mappings, as actors independently perform the tasks. For in-
stance, in RayTracer program Runner acts as master that dis-
tributes the work to a set of RayTracer worker actors. RayTracer

worker actors perform independent computations. For this
program, mapping is intuitive. Runner could be assigned
Thread execution policy and each RayTracer worker could be
assigned Task execution policy. Hence, it is easy to map ac-
tors to threads and there is very little opportunity for further
improving the initial mapping.

Our heuristic-based mapping technique achieved large
improvements for five programs (mbrot, serialmsg, polyno-
mialintegral, fasta, histogram). These programs have sub-

37

Figure 13. Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task mapping) for
the benchmark programs on 2, 4, 8 and 12-core settings.

linear performance benefits. In other words, in these pro-
grams balancing computation over communication is a dif-
ficult task. BenchErl-mbrot program is a Mandelbrot simu-
lator. This program generates a set of pixels that corresponds
to a 2-D image of a specific resolution. These pixels are dis-
tributed to a set of workers (Worker) which communicates
with Madel capsule to check if the pixel belongs to Mandel
set or not. By assigning Monitor execution policy to Madel

capsule large communication overhead between Worker cap-
sules and Madel is reduced. Also, Madel capsule busy-waits un-
til the Worker capsules requests Madel to perform Mandel set
check. The assignment of Monitor execution policy to Madel

eliminates this busy-waits because the Worker itself performs
Madel set check. In BenchErl-serialmsg program binding
Generator capsules to Receiver capsules by assigning Monitor
execution policy to Dispatcher large communication overhead
between Generator and Receiver is reduced.

In Polynomial there are 500 instances of ComputeActor

which performs small computations and do not require ded-
icated thread. By assigning Monitor execution policy thread
processing DispatchActor processes ComputeActor capsules. In
fasta, the two instances of RandomFasta capsules commu-
nicate highly with their respective FloatProbFreq instances.
FloatProbFreq is leaf-capsule and has low computation. By
assigning Monitor execution policy we eliminate commu-
nication overheads. Writer capsule busy-waits until complete
set of sequences are generated by RandomFasta and RepeatFasta

capsules. By assigning Monitor execution policy communi-

cation overhead is reduced. In Histogram program, Reader

that has external I/O blocking is assigned Thread execution
policy. Bucket and Printer perform very small computations.
The communication between Reader and 128 instances of
Bucket is very large. By assigning Monitor execution policy,
Reader and Buckets are processed by same thread.

Details. So far we have discussed only outliers and
their performance. We will now investigate the remaining
benchmark programs to see what mappings were crucial in
producing good performance. In bang, by assigning Moni-
tor execution policy for Receiver, it is now processed by the
thread that is processing the Sender. This reduced the com-
munication overhead between Sender and Receiver and im-
proved the performance of the program. Similarly in ehb
program, by assigning Monitor execution policy to Receiver

we have reduced communication overhead between Senders
and Receivers in each group. In ScratchPad program run-
ning FileSystemWalker and LocAnalyzer concurrently is impor-
tant. FileSystemWalker performs high computations recursively
and communicates the intermediate results to LocAnalyzer.
LocAnalyzer delegates its work to a set of LocCounter instances.
Both Accumulator that collects and processes the intermediate
results and ResultAccumulator that collects final set of results
busy-waits until all the requests from FileSystemWalker are pro-
cessed by LocCounter instances. Hence, assigning Monitor ex-
ecution policies to busy-wait capsules greatly reduces the
communication overhead. knucleotide has SequenceGen that
reads input DNA sequence and uses blocking read opera-

38

Figure 14. Comparing scalability of our heuristic-based mapping against default-thread and default-task mapping (x-axis: 2,
4, 8, and 12-core settings and y-axis: runtime in seconds).

tion. Hence it is assigned Thread execution policy. There
are 46 instances of Nucleotide capsule. Nucleotide performs CPU
intensive computations and sends the result to Collector cap-
sule. Collector capsule busy-waits until the results from all 46
Nucleotide capsules is received. By assigning Monitor execu-
tion policy to Collector we eliminate this busy-wait that greatly
improves the performance of this program.

In summary, for these programs a heuristic-based map-
ping such as the one we proposed yields better perfor-
mance over default mapping techniques. These programs
also shows the characteristics that are hard to fine tune for
programmers to gain additional performance benefits.

Figure 14 evaluates the scalability of three mapping tech-
niques. The individual charts show the effect of adding
cores on program runtime. It can be seen that our heuristic-
based mapping technique suffers less from scalability is-
sues when compared to the default mappings. When addi-
tional cores are allocated to the program, additional JVM
threads are available for the program to use. The default
mappings utilize the additional threads without properly ad-
justing the mappings. In case of highly parallel programs,
additional threads balance the workload and helps to im-
prove the overall performance of the program. Whereas, in
other program additional threads reduces the computation-

to-communication ratio and adds more overhead. This be-
havior is evident when we profile the default mappings
on additional cores we see the number of context-switches
rapidly increases. However, in our heuristic-based mapping,
when additional threads are available, threads are utilized by
keeping the critical mappings intact. For instance, we do not
separate hub actors from its affinity actors when additional
threads are available for use. This helps us introduce less
overheads. To further illustrate, consider fasta program. This
program has two instances of RandomFasta, RepeatFasta, one
two FloatProbFreq and one Writer. When additional threads are
available, it is important that the mapping technique does
not assign separate threads for RandomFasta and FloatProbFreq

capsules. This is not ensured in default mappings.
Predictive Power of cVector. Our mapping function

shown in Figure 4 indicates that BLK is the most powerful
cVector field. If BLK is true, we ignore other fields in cVector
and assign Thread execution policy. In the remaining cases,
it is mandatory that other fields in cVector should be checked
to assign appropriate execution policy. STATE field in cVec-
tor is unused for deciding the execution policy. However, this
field is used to further enhance the mapping as follows. If
any actor is assigned Task execution policy and if STATE is
false it indicates that multiple threads can process messages

39

in the actor’s message queue simultaneously. For instance,
consider FileSearch program shown in Figure 7, FileScanner

capsule has STATE value false. By allocating more threads
to FileScanner task, overall performance of the program can be
further improved.

Handling Dynamism. Many actor languages and frame-
works allow dynamic creation of actors and actor communi-
cation graph may not be available statically. In our mapping
technique, when an actor instance is created dynamically, it
is assigned an execution policy based on the actor type (or
actor definition). Hence, every actor created statically or dy-
namically is assigned an execution policy. When the actor
communication graph cannot be determined statically, we
run the program (using default thread mapping) on sample
inputs to fully or partially determine actor communication
graph and we use the computed graph for mapping actors
to threads efficiently. In summary, we believe that the dy-
namism in actor applications can be accounted in our actors
to threads mapping technique.

5.4 Threats to Validity
A threat to validity is our evaluation that uses benchmarks
translated to Panini. However, we compare the performance
of three different mapping techniques using the same panini
program and not three different implementations of the pro-
gram. The three mapping techniques are implemented in
Panini’s runtime such that we achieve different actors to
threads mapping.

6. Conclusion
In this paper we investigated different aspects of actor-
based programs that influence the mapping of actors to JVM
threads. We proposed a heuristic-based approach that given
an actor program and its communication graph produces ac-
tor characteristics vectors for actors. Using the actor charac-
teristics vectors, we apply a set of heuristics in a systematic
manner to assign execution policies for actors. The execu-
tion policies for actors defines how actors are mapped to
JVM threads. We proposed using our heuristic-based map-
ping in place of default mappings. Our evaluation over a
wide range of actor programs shows that our heuristic-based
mapping achieves on average 50% improvement over de-
fault mappings. Further, our heuristic-based mapping tech-
nique assigns execution policies to actors automatically at
compile-time. This helps to reduce programmers time and
efforts to arrive at initial optimal mappings.

At a higher-level, we believe that better abstractions that
enable improved modularity are important for concurrent
programming [17–19]. However, a problem with abstrac-
tions in practice is that the abstraction boundaries are of-
ten breached for performance reasons. By providing an auto-
matic technique for improving mapping of concurrency ab-
stractions to threads, we hope to mimimize such breach of
abstraction and improve portability.

Acknowledgments
This work was supported in part by the NSF under grants
CCF-08-46059, CCF-11-17937, and CCF-14-23370,.

References
[1] Panini Programming Language. http://paninij.org/.

[2] Tim Jansen. Actors guild. https://code.google.
com/p/actorsguildframework/,2009.

[3] Computer language benchmarks game. http:
//benchmarksgame.alioth.debian.org/.

[4] Actor Collection. http://actor-applications.cs.
illinois.edu/.

[5] Mike Rettig. Jetlang. http://code.google.com/p/
jetlang/,2008-09.

[6] Panini Benchmark Programs. design.cs.iastate.
edu/strategy/.

[7] StreamIt. http://groups.csail.mit.edu/cag/
streamit/index.shtml/.

[8] G. A. Agha. Actors: a model of concurrent computation in
distributed systems. 1985.

[9] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas,
Y. Tsiouris, and I. E. Venetis. A scalability benchmark suite
for erlang/otp. In Proceedings of Erlang ’12, pages 33–42.

[10] M. Astley. The actor foundry: A java-based actor program-
ming environment. In Open Systems Laboratory, University
of Illinois at Urbana-Champaign, 1998-99.

[11] M. Bagherzadeh and H. Rajan. Panini: A concurrent program-
ming model for solving pervasive & oblivious interference.
Technical Report 14-09, Iowa State University, August 2014.

[12] T. Desell and C. A. Varela. Salsa lite: A hash-based actor
runtime for efficient local concurrency.

[13] E. Francesquini, A. Goldman, and J.-F. Méhaut. Actor
scheduling for multicore hierarchical memory platforms. In
Proceedings of Erlang’13 workshop, pages 51–62. ACM.

[14] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigor-
ous java performance evaluation. pages 57–76.

[15] M. Gupta. Akka Essentials. Packt Publishing Ltd, 2012.

[16] P. Haller and M. Odersky. Actors that unify threads and
events. In Proceedings of Coordination Models and Lan-
guages 2007.

[17] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit
invocation meets safe, implicit concurrency. In GPCE ’10:
Ninth International Conference on Generative Programming
and Component Engineering, October 2010.

[18] H. Rajan. Building scalable software systems in the multicore
era. In 2010 FSE/SDP Workshop on the Future of Software
Engineering, Nov. 2010.

[19] H. Rajan, S. M. Kautz, and W. Rowcliffe. Concurrency by
modularity: Design patterns, a case in point. In 2010 Onward!
Conference, October 2010.

[20] H. Rajan, S. M. Kautz, E. Lin, S. L. Mooney, Y. Long, and
G. Upadhyaya. Capsule-oriented programming in the Panini
language. Technical Report 14-08, 2014.

40

[21] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura.
Scalability-based manycore partitioning. In Proceedings of
the 21st int. Conf. on PACT, pages 107–116, 2012.

[22] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping
on multi/many-core systems: survey of current and emerging
trends. In Proceedings of DAC’13, page 1. ACM.

[23] L. Smith, J. Bull, and J. Obdrizalek. A parallel Java Grande
benchmark suite. In ACM/IEEE Conf. on Supercomputing,
pages 6–6, 2001.

[24] T. Sondag and H. Rajan. Phase-based tuning for better uti-
lization of performance-asymmetric multicore processors. In

International Symposium on Code Generation and Optimiza-
tion (CGO), April 2011.

[25] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. In Proceedings of ECOOP’08.

[26] A. Tousimojarad and W. Vanderbauwhede. An efficient thread
mapping strategy for multiprogramming on manycore proces-
sors. arXiv preprint arXiv:1403.8020, 2014.

[27] J. Zhang. Characterizing the scalability of erlang vm on many-
core processors. 2011.

41

