
Mining Software Repositories for Evaluating Software
Engineering Properties of Language Designs

Hridesh Rajan
Dept. of Computer Science,

Iowa State University
hridesh@cs.iastate.edu

ABSTRACT
Improved separation of concern is important for dealing with in-
creasing complexity of today’s software systems. A number of
language designs have been proposed in the last decade with the
common goal to improve the separation of concerns by providing
better modularization mechanisms e.g. mix-ins, units, roles, lay-
ers, hyperspaces, events, aspects, etc. To understand the benefits
of a new modularization mechanism, it is important to apply it to
real world large scale software systems, where there are real needs
for separation of concerns. However, large scale software projects
are generally managed very cautiously and adoption of a new tech-
nique in these projects is generally harder to achieve. Typically
such adoption is driven by demonstrated success of the technique
in other large scale projects, a catch-22 situation. In this position
paper, I discuss a software repository mining-based technique to
achieve the effect of adoption in a large scale software project in
a controlled setting. Rich change history available in the version
control systems for open source software projects, and advances
in software repository mining enable this technique for empirical
evaluation of a modularization mechanism.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-
ming; D.2.2 [Software Engineering]: Design Tools and Tech-
niques — Modules and interfaces; D.2.8 [Software Engineer-
ing]: Metrics — Complexity Measures; D.3.3 [Programming
Languages]: Language Constructs and Features — Control struc-
tures; Procedures, functions, and subroutines

General Terms
Design, Measurement, Human Factors, Languages

Keywords
modularity, empirical evaluation, software repositories, design for
change, information hiding, programming language design, sepa-
ration of concerns metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Today, finding an appropriate separation of concerns [16] is un-

derstood to be perhaps the fundamental challenge in software de-
sign. It promotes studying different interests or concerns of a com-
plex problem separately, with none or very little knowledge of
other concerns. Separation of concerns is the key to maintaining
overall intellectual control in the face of complex problem and de-
sign solutions. Over the years, the quest for better separation of
concerns has led to different technologies, among which are well-
established modularization techniques [43, 44] such as structured
programming [14, 15, 33, 59], abstract data types [37], and object-
orientation (OO) [11, 26, 34, 39, 58].

A whole new set of such modularization techniques as mix-
ins [4], units [22], implicit-invocation [25, 54, 55], hyperslices [28,
42], composition filters [1], adaptive methods [36], roles [35], as-
pects [31, 48, 49, 45], open classes [10], etc, have emerged in the
last decade or so with a common goal to enable improved sep-
aration of concerns. Although the Jury is still out on some of
these techniques, the overwhelming academic and industrial in-
terest makes it abundantly clear that there is a pressing need for
improved separation of concerns techniques. This is primarily
because implementation of some concerns are often hard to fac-
tor out into separate modules using classical decomposition tech-
niques [56]. For example, the code for a thread policy is spread
across the system. These emerging modularization techniques pro-
vide engineers with new possibilities for keeping such concerns
separate in the source code.

Typical evaluation of a modularization mechanism examines it in
the context of canonical examples. For example, figure editor ex-
ample inspired from JHotDraw [23], a system originally developed
as a design exercise by Erich Gamma and Thomas Eggenschwiler,
is prevalent in the aspect-oriented programming literature. Evalu-
ation using canonical examples has many advantages. Canonical
examples act as a smoke test of the technique, “if the technique
does not work in the context of canonical examples, it is unlikely
to work in real projects.” They also allows readers and researchers
to focus on the problem at hand without getting distracted by the
essential complexities of the problem domain [8].

Full promise of these techniques is, however, hard to evaluate
with just canonical examples. If a technique doesn’t work in the
context of canonical examples, often we can say for sure that it
is not going to work for real world projects, however, if it does
work results obtained may not be directly applicable to real world
projects. Scalability related issues are almost never examined in a
study that uses canonical examples. A new modularization tech-
nique can be applied to a real world project to address some of
these threats to the validity of its evaluation. A real world study is,
however, extremely time consuming. Often it also requires insider

1

access to subject projects to make the case for adoption. Last but
not the least, the case for adoption often depends on the demon-
strated success of the modularization technique in the context of
other projects, a chicken and an egg situation.

This position paper describes an empirical evaluation technique
that we believe could be useful to overcome some of these hurdles.
The key idea is to capitalize on the rich version control histories
available for the open source software projects to realistically sim-
ulate a series of real world changes in software projects. First, an
initial and a final version for the open source project are selected.
Second, using existing techniques for software repository mining
changes between initial and final versions are organized as a se-
quence of refactorings [13] such that by replaying the refactorings
in the specified order on the initial version yields the final version.
Third, this sequence of refactorings is transformed into all candi-
date modularization techniques such that by replaying the modified
refactorings in the specified order on the initial version yields the
final version, (possibly) improved using a candidate modularization
technique. Finally, analyzing each refactored version produced in
this manner is compared w.r.t. desired software engineering met-
rics to compare and contrast modularization techniques. The scope
of our evaluation technique is limited to the following:

• techniques: language constructs for improved separation of
concerns,

• claims: in terms of information-hiding modularity [43], de-
sign for change, etc, and

• project settings: steady-state projects with source control his-
tories.

The main objective of our technique are:

• overcome the threats to the validity: to reduce the threat to
the validity of empirical evaluations of language designs, our
technique should reduce/eliminate biases from the experi-
mental settings, and

• automation/semi-automation: to reduce the cost of empirical
evaluation and to encourage rigorous, extensive evaluation of
modularization techniques, it should be possible to automate
much of this technique at a low cost.

In the rest of this position paper, we explain our technique in
detail. To make the ideas concrete, we will discuss them in the
context of the Ptolemy language recently proposed by Rajan and
Leavens [47]. Ptolemy combines ideas from implicit invocation
and aspect-oriented languages and has several advantages com-
pared to both. Next section briefly presents this language design.
Section 3 presents the proposed evaluation technique and Section 4
concludes.

2. PTOLEMY: A BRIEF INTRODUCTION
Ptolemy is an extension of object-oriented languages with sup-

port for quantified, event types [47]. Ptolemy’s design is inspired
by II languages such as Rapide [38] and AO languages such as As-
pectJ [30]. It also incorporates some ideas from Eos [50, 48] and
Caesar [40]. The key ideas in the language are that it lets program-
mers declare named event types that contain information about the
names and types of event arguments (exposed context). An event
type identifies an expression as an event in a declarative manner.
This event type can then be used to quantify over all such events.
Event types reduce the coupling between the observers of the events

and the set of events by eliminating the name dependence between
the two.

An example Ptolemy program is shown in Figure 1. This code is
part of a larger editor that works on drawings comprising points,
lines, and other such figure elements [30, 32]. The program is
adapted to be more Java-like, whereas the language presented in
our previous work on Ptolemy was an expression language [47].

1 FElement evtype FEChange{ FElement changedFE; }
2 FElement evtype MoveUpEvent {
3 FElement targetFE; int y; int delta;
4 }
5 interface FElement{}
6 public class Point implements FElement{
7 int x, y;
8 public void setX(int newX){
9 FElement changedFE = this;

10 event FEChange{ x = newX;}
11 }
12 public void moveUp(int delta){
13 FElement movedFE = this;
14 event MoveUpEvent{ y = y + delta; }
15 }
16 public void makeEqual(Point other){
17 FElement changedFE = other;
18 event FEChange{
19 other.x = this.x; other.y = this.y;
20 }
21 }
22 }
23 public class Update{
24 FElement last;
25 public Update Update(){ register(this); }
26 public void update(FEChange next,
27 FElement changedFE){
28 proceed(next); this.last = changedFE;
29 Display.update();
30 }
31 public void check(MoveUpEvent next,
32 FElement targetFE, int y, int delta){
33 if (delta < 100)){ proceed(next); }
34 }
35 when FEChange do update;
36 when MoveUpEvent do check;
37 }

Figure 1: Drawing Editor in Ptolemy

In companion papers [46, 47], we discussed the limitations of II
and AO languages. To summarize, compared with AO languages,
II languages have three limitations [47]. First, while subject mod-
ules are decoupled from observer modules, observer modules re-
main coupled with subjects. Second, their is no construct equiva-
lent to AO “around advice” that allows to replace the code for an
event. Instead, unnecessarily complex emulation code to simulate
closures in languages such as Java and C# is required in II lan-
guages. Third, quantification can be tedious in II languages. The
code that describes how each event is handled can grow in propor-
tion to the number of objects from which implicit invocations are
to be received.

Compared with II languages, AO languages have four limita-
tions [47]. These limitations are not conceptual, rather, they stem
from the fact that implementations of most current AO event mod-
els use PCDs based on pattern matching (on names [30], lexical
structures [51, 20], program traces [17], etc). First problem is com-
monly known as the “fragile pointcut problem”, which is caused
by the use of pattern matching as a quantification mechanism [52,
57]. Pattern matching based PCDs are coupled to the code that

2

implements the implicit event that they describe. Thus, seemingly
innocuous changes break aspects [29]. Recent research results such
as Aspect Aware Interfaces (AAIs) [32], Crosscut Programming In-
terfaces (XPIs) [53, 27], Model-based Pointcuts [29], Open Mod-
ules (OM) [2], etc, have recognized and proposed to address the
fragile pointcut problem, but none address it completely [47].

Second problem is that current AO event models do not implic-
itly announce some kinds of events [53, pp. 170]. Therefore,
they also do not provide PCDs that select such events. Alterna-
tive AO approaches such as LogicAJ provide a finer-grained event
model [51], however, PCDs in such techniques become strongly
coupled with the structure of the base code and therefore become
more fragile [47].

Third and fourth problems have to do with the interface for ac-
cessing contextual (or reflective) information about an event. In
some AO approaches, this interface is fixed by the language de-
signer and does not satisfy all usage scenarios [53]. In other AO
languages (e.g. LogicAJ [51]), virtually unlimited reflective ac-
cess to the context surrounding the lexical structure using meta-
variables is possible but requires that the events form a regular
structure [47]. Furthermore, contextual information that fulfills a
common need (or role) in the handlers is not available uniformly to
PCDs (and handlers) [47].

In Ptolemy, evtype declaration allow programers to declare
named event types. An event type (evtype) declaration p has a
return type, a name, and zero or more context variable declarations.
These context declarations specify the types and names of reflec-
tive information communicated between announcements of events
of type p and handler methods. These declarations are independent
from the modules that announce or handle these events. The event
types thus provide an interface that completely decouples subjects
and observers. Events are explicitly announced using event ex-
pressions. These expressions enclose a body expression, which can
be replaced by a handler. This functionality is similar in expres-
siveness to around advice in AO languages.

Finally, the names of evtype declarations can be utilized for
quantification, which simplifies binding and avoids coupling ob-
servers with subjects.

3. EMPIRICAL EVALUATION APPROACH
Conducting an empirical evaluation of the software engineering

properties of a new language design is a challenge. For exam-
ple, claims such as “the quantification based on quantified, event
types are less fragile compared to traditional syntactic quantifica-
tion mechanisms” or that “quantified event-types improve the ro-
bustness of the handler code against base code changes, and makes
it easier for the handlers to uniformly access reflective information
about the event,” may not be validated without large-scale use of
the language design over an elongated period of time. Conclusions
drawn from small examples, although helpful, may not correctly re-
flect the anticipated software engineering benefits of the language
design.

A reasonable evaluation necessitates enough experience with the
design to really say for sure it is right. In order to conduct such an
evaluation, the precondition is the adoption of the language design
in real world large-scale projects. Ironically, such adoption is of-
ten driven by demonstrated success of the language design in other
projects. Taking these considerations into account, our proposed
empirical evaluation technique is as follows:

3.1 Select Candidate Software Projects
The primary criteria for selecting a project as a candidate for our

empirical evaluation technique is that they should be open source

i.e. the source code is available for analysis, presence of exist-
ing version history that can be analyzed, large-size i.e. improved
separation of concerns has real and perceived value in the context
of this project, an active community contributing frequent releases
and bug-fixes, which in turn translates to a rich change history in
CVS.

For Ptolemy an additional requirement must be imposed. Our
current Ptolemy infrastructure is based on Java, therefore, the
project should be a Java project. A bonus would be an open and ac-
cepting community that can be persuaded to adopt based on demon-
strated results.

Current candidate projects for Ptolemy include Eclipse [65], Net-
Beans [66], Azureus [64] and Ant [63]. We already have some
experience with Eclipse [65], Azureus [64] and Ant [63] projects
and their current build systems in the context of another research
project [18, 19].

3.2 Select an initial version for candidate
projects

An older version of the project is extracted from its repository
and used as a baseline for the empirical evaluation. For example,
a 2001 version of Eclipse with the sticky tag v20011218 will be
selected as the baseline for Eclipse. A challenge in this task is that
often earlier versions of a software system use a different set of
libraries, runtimes, etc. For example, all of our candidate projects
made a transition from using Java 1.4 to Java 1.5 and then to Java
1.6 in the last few years. Recreating the build environment for such
projects will be the key, however, once such a build environment is
created, it could be reused for a number of candidate projects.

3.3 Use Concern Mining Techniques to Semi-
automatically Identify Fragmented and
Scattered Concerns for Modularization

After identifying an old version of a candidate project, we use au-
tomatic concern mining techniques on this version to extract frag-
mented and scattered concerns for modularization. Although auto-
matic concern mining is still an emerging area, a number of tech-
niques are available [5, 6, 61, 60]. One such technique by Breu,
Zimmermann, and Lindig [7, 5, 6] is also applied to identify frag-
mented and scattered concerns in Eclipse [65]. Much of the re-
ported results is directly applicable.

3.4 Use Ptolemy and Alternative II and AO
Techniques to Modularize Identified Con-
cerns

We then use the hints from automatic concern mining techniques
to modularize the fragmented and scattered concerns in candidate
projects. Three different starting versions are created in this step,
one that uses implicit invocation techniques to modularize, a sec-
ond that uses AO techniques to modularize, and a third that uses
quantified, event types of Ptolemy.

3.5 Replay Changes on All Versions Using
Version History

Once we have three versions (Ptolemy, AO and II) of the can-
didate project’s old release, we will extract real changes from the
project’s CVS repository.

At least three frameworks are available today for this task
APFL [62, 12], which is an open source framework for the
ECLIPSE programming environment that facilitates the analysis
of CVS archives, Kenyon [3], a common extraction, preprocess-
ing, and storage platform for software configuration management
and analysis, and Molhado [41], a configuration management and

3

Attributes Metrics Definitions

Separation of Concerns
Concern Diffusion over Com-
ponents (CDC)

This metric is defined as the total number of classes (including those
that announce events, and those that provide handlers that register to
these events) the contribute to the implementation of a concern and
those that access these classes.

Concern Diffusion over Oper-
ations (CDO)

This metric is defined as the total number of methods and handler
methods that mainly contribute to the implementation of a concern and
the number of other methods and handlers that access them.

Concern Diffusions over LOC
(CDLOC)

This metric is defined as the total number of points for each concern in
the code where there is a transition from one concern to another.

Coupling Coupling Between Compo-
nents (CBC)

Total number of classes with which a given class is coupled.

Depth Inheritance Tree (DIT) This metrics essentially represents the depth of the inheritance hierar-
chy in an application.

Cohesion Lack of Cohesion in Opera-
tions (LCOO)

Measures the lack of cohesion of a class in terms of the amount of
method and handler methods that do not access the same instance vari-
able.

Size Lines of Code (LOC) Total line of code in the application excluding comments.
Number of Attributes(NOA) Total number of attributes of each class.
Weighted Operations per
Component (WOC)

Total number of methods of each class and the number of its parame-
ters.

Figure 2: The metrics suite to be used in this project and their definitions[9, 24, 21].

version control infrastructure and methodology.
In the context of Ptolemy we use Molhado as it supports a higher-

level of abstraction for analyzing changes between versions. For
example, a variant of Molhado, MolhadoRef [13] has been used to
replay refactorings of object-oriented programs to detect conflicts.

Extracted real changes in the candidate projects will be replayed
to mimic software evolution. The key challenge in this activity is
that Ptolemy’s, II, and AO versions of candidate projects will differ
from the baseline old version that we extracted from the repository
in that some fragmented, scattered and tangled concerns are now
modularized in this version. This is likely to create conflicts when
we replay changes.

Our current insight into resolving this issue is to divide modu-
larization of fragmented, scattered and tangled concerns as a set of
refactorings. We also divide real changes exhibited in the project
as refactorings.

We then use the MolhadoRef [13] tool to reconcile these refac-
torings with each other. As of today, we perceive this to be the
biggest threat to the feasibility of our empirical evaluation.

3.6 Software Evolution Analysis and Metrics
for Evaluation

The final step is then to analyze the effect of replaying the
changes on all three versions of the candidate software project.
This analysis will primarily use the set of metrics suite developed
by Garcia et al. [24]. Garcia et al. [24] refined the object-oriented
metrics proposed by Chidambar and Kemerer [9] and described by
Fenton and Pfleeger [21] for advanced separation of concerns tech-
niques.

We have adapted these metrics for evaluating II and Ptolemy’s
solutions. For AO solution, the original metrics defined by Gar-
cia et al. [24] will be used. The adapted metrics and their defini-
tions are shown in Figure 2.

The adapted definitions are closer to Chidambar and Ke-
merer’s [9] original definition due to the unification of aspects and
classes [50] in Ptolemy’s language model.

4. CONCLUSION
In this position paper, we discussed a technique for empirical

evaluation of software engineering properties of new language de-

signs that claim to provide software engineers with new capabili-
ties to modularize their concerns. The key idea behind the empiri-
cal evaluation is to use the real changes in a open source software
project’s life time to model software evolution. This promises to re-
duce the biases in the evaluation. With the help of advances in soft-
ware repository mining techniques much of the evaluation process
could be automated, which is an added advantage. We presented
our technique in the context of Ptolemy’s evaluation, however, it
would be interesting to see whether it generalizes beyond II and
AO-like language designs.

There are several questions that remain to be answered and the
author would like to direct the attention of the workshop partici-
pants to most important of these.

1. Proving equivalence of a refactoring across language designs
would be important. This risk could be mitigated to a certain
extent if the base language for these advance modularization
mechanisms is the same. An additional technique could be to
give semantics to the new language constructs by translation
to existing construct. Then the issue of the equivalence of
refactoring would reduce to the issue of equivalence of two
snippets in one language.

2. Is the quality of subject projects important? Yes and no.
Although following better software practices in a software
project often increases the benefits obtained from a new mod-
ularization, the metrics measured here are relative. Further-
more, it would be sensible to see the performance of a new
modularization technique in the context of projects that may
not have been designed to make such modularization easy to
begin with.

3. Last but not the least, the need for a community-driven
framework is apparent here. The efforts required to ma-
terialize this kind of validation framework may be beyond
the scope of a single research program and may require co-
operation among several research projects with complemen-
tary expertise.

4

Acknowledgements
This work is supported in part by the National Science Foundation
under grant CNS-06-27354.

5. REFERENCES
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Proceedings of the ECOOP’93 Workshop
on Object-Based Distributed Programming, volume 791,
pages 152–184. Springer-Verlag, 1994.

[2] J. Aldrich. Open modules: Modular reasoning about advice.
In Proc. 2005 European Conf. Object-Oriented
Programming (ECOOP 05), pages 144Ű–168, July 2005.

[3] J. Bevan, S. Kim, and L. Zou. Kenyon: A common software
stratigraphy system.
|http://dforge.cse.ucsc.edu/projects/kenyon|.

[4] G. Bracha and W. Cook. Mixin-based inheritance. In
OOPSLA/ECOOP ’90: Proceedings of the European
conference on object-oriented programming on
Object-oriented programming systems, languages, and
applications, pages 303–311. ACM Press, 1990.

[5] S. Breu and T. Zimmermann. Mining aspects from version
history. In ASE ’06: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software
Engineering, pages 221–230, 2006.

[6] S. Breu, T. Zimmermann, and C. Lindig. Aspect mining for
large systems. In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 714–715, 2006.

[7] S. Breu, T. Zimmermann, and C. Lindig. Mining eclipse for
cross-cutting concerns. In MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories,
pages 94–97. ACM, 2006.

[8] F. P. Brooks. The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Addison Wesley,
Reading, Mass., second edition, 1995.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

[10] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
Multijava: modular open classes and symmetric multiple
dispatch for java. In OOPSLA ’00: Proceedings of the 15th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
130–145. ACM Press, 2000.

[11] O.-J. Dahl and K. Nygaard. Simula: an algol-based
simulation language. Commun. ACM, 9(9):671–678, 1966.

[12] V. Dallmeier, P. Weigerber, and T. Zimmermann. APFL: A
preprocessing framework for eclipse.
|http://www.st.cs.uni-sb.de/softevo/apfel/|.

[13] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen.
Refactoring-aware software merging and configuration
management. 2007.

[14] E. W. Dijkstra. Go to statement considered harmful.
Communications of the ACM, 11(3):147–148, March 1968.

[15] E. W. Dijkstra. Notes on Structured Programming. circulated
privately, April 1970.

[16] E. W. Dijkstra. On the role of scientific thought. EWD 477,
August 1974.

[17] R. Douence, P. Fradet, and M. Sudholt. Trace-based aspects.
Aspect-oriented Software Development, pages 141–150.

[18] R. Dyer, H. Narayanappa, and H. Rajan. Nu: preserving
design modularity in object code. SIGSOFT Softw. Eng.
Notes, 31(6):1–2, 2006.

[19] R. Dyer and H. Rajan. Modular program transformations for
aspect-oriented constructs. Technical Report 434, Iowa State
University, Department of Computer Science, July 2006.

[20] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as
functional queries. In APLAS 04, pages 366–381.

[21] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co.,
Boston, MA, USA, 1998.

[22] M. Flatt and M. Felleisen. Units: cool modules for hot
languages. In PLDI ’98: Proceedings of the ACM SIGPLAN
1998 conference on Programming language design and
implementation, pages 236–248. ACM Press, 1998.

[23] E. Gamma and T. Eggenschwiler. Jhotdraw: a java gui
framework for technical and structured graphics.
|http://sourceforge.net/projects/jhotdraw|.

[24] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. von Staa. Modularizing design patterns
with aspects: a quantitative study. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented
software development, pages 3–14. ACM, 2005.

[25] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In VDM ’91: Proceedings
of the 4th International Symposium of VDM Europe on
Formal Software Development-Volume I, pages 31–44,
London, UK, 1991. Springer-Verlag.

[26] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983.

[27] W. G. Griswold, K. J. Sullivan, Y. Song, M. Shonle,
N. Tewari, Y. Cai, and H. Rajan. Modular software design
with crosscutting interfaces. IEEE Software, Special Issue on
Aspect-Oriented Programming, Jan/Feb 2006.

[28] W. Harrison and H. Ossher. Subject-oriented programming (a
critique of pure objects). In Proceedings of the OOPSLA ’93
Conference on Object-oriented Programming Systems,
Languages and Applications, pages 411–28. IEEE Comput.
Soc, Los Alamitos, CA, October 1993.

[29] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing
the evolution of aspect-oriented software with model-based
pointcuts. In ECOOP ’06, pages 501 – 525.

[30] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, ECOOP 2001 — Object-Oriented
Programming 15th European Conference, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer-Verlag, Budapest, Hungary, June 2001.

[31] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland, June
1997. Springer-Verlag.

[32] G. Kiczales and M. Mezini. Separation of concerns with
procedures, annotations, advice and pointcuts. In ECOOP
2005 - Object-Oriented Programming, 19th European
Conference, Glasgow, UK, July 25-29, 2005, Proceedings,
volume 3586 of Lecture Notes in Computer Science, pages
195–213. Springer, 2005.

5

|
|
|

[33] D. E. Knuth. Structured programming with go to statements.
ACM Comput. Surv., 6(4):261–301, 1974.

[34] B. B. Kristensen, O. L. Madsen, B. Muller-Pedersen, and
K. Nygaard. Abstraction mechanisms in the beta
programming language. In POPL ’83: Proceedings of the
10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 285–298. ACM Press, 1983.

[35] B. B. Kristensen and K. Osterbye. Roles: conceptual
abstraction theory and practical language issues. Theor.
Pract. Object Syst., 2(3):143–160, 1996.

[36] K. J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Co., Boston, MA, USA, 1995.

[37] B. Liskov and S. Zilles. Programming with abstract data
types. In Proceedings of the ACM SIGPLAN symposium on
Very high level languages, pages 50–59, 1974.

[38] D. C. Luckham, J. J. Kennedy, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of system
architecture using Rapide. IEEE Transactions on Software
Engineering, 21(4):336–54, April 1995.

[39] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.

[40] M. Mezini and K. Ostermann. Conquering aspects with
caesar. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages
90–99. ACM Press, 2003.

[41] T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao. An
infrastructure for development of object-oriented, multi-level
configuration management services. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 215–224. ACM, 2005.

[42] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns using hyperspaces. IBM Research Report 21452,
IBM, April 1999.

[43] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–8, December 1972.

[44] D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular
structure of complex systems. IEEE Transactions on
Software Engineering, SE-11(3):259–66, March 1985.

[45] H. Rajan. Unifying Aspect- and Object-Oriented Program
Design. PhD thesis, The University of Virginia,
Charlottesville, Virginia, August 2005.

[46] H. Rajan and G. T. Leavens. Quantified, typed events for
improved separation of concerns. Technical Report 07-14,
Iowa State University, Department of Computer Science,
July 2007. In submission.

[47] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP ’08: 22nd European
Conference on Object-Oriented Programming, July 2008.

[48] H. Rajan and K. Sullivan. Eos: instance-level aspects for
integrated system design. In ESEC/FSE-11: Proceedings of
the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 297–306, New
York, NY, USA, 2003. ACM Press.

[49] H. Rajan and K. Sullivan. Need for instance level aspect
language with rich pointcut language. In L. Bergmans,
J. Brichau, P. Tarr, and E. Ernst, editors, SPLAT: Software
engineering Properties of Languages for Aspect
Technologies, mar 2003.

[50] H. Rajan and K. J. Sullivan. Classpects: unifying aspect- and
object-oriented language design. In ICSE ’05: Proceedings
of the 27th international conference on Software engineering,
pages 59–68, New York, NY, USA, 2005. ACM Press.

[51] T. Rho, G. Kniesl, and M. Appeltauer. Fine-grained generic
aspects. In FOAL’06. 2006.

[52] M. Stoerzer and J. Graf. Using pointcut delta analysis to
support evolution of aspect-oriented software. In ICSM ’05:
Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 653–656,
Washington, DC, USA, 2005. IEEE Computer Society.

[53] K. J. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information hiding interfaces for
aspect-oriented design. In The Joint 10th European Software
Engineering Conference and 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005), pages 166–175, Sept 2005.

[54] K. J. Sullivan and D. Notkin. Reconciling environment
integration and component independence. SIGSOFT
Software Engineering Notes, 15(6):22–33, December 1990.

[55] K. J. Sullivan and D. Notkin. Reconciling environment
integration and software evolution. ACM Transactions on
Software Engineering and Methodology, 1(3):229–68, July
1992.

[56] P. Tarr, H. L. Ossher, W. H. Harrison, and S. M. Sutton, Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In Proceedings of the 21st International
Conference on Software Engineering, May 1999.

[57] T. Tourwé, J. Brichau, and K. Gybels. On the existence of the
aosd-evolution paradox. In L. Bergmans, J. Brichau, P. Tarr,
and E. Ernst, editors, SPLAT: Software engineering
Properties of Languages for Aspect Technologies, March
2003.

[58] D. Ungar and R. B. Smith. Self: The power of simplicity. In
OOPSLA ’87: Conference proceedings on Object-oriented
programming systems, languages and applications, pages
227–242. ACM Press, 1987.

[59] N. Wirth. Systematic Programming: An Introduction.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1973.

[60] I. Yuen and M. P. Robillard. Bridging the gap between aspect
mining and refactoring. In LATE ’07: Proceedings of the 3rd
workshop on Linking aspect technology and evolution,
page 1, 2007.

[61] C. Zhang and H.-A. Jacobsen. Efficiently mining
crosscutting concerns through random walks. In AOSD ’07:
Proceedings of the 6th international conference on
Aspect-oriented software development, pages 226–238, 2007.

[62] T. Zimmermann. Fine-grained processing of cvs archives
with apfel. In eclipse ’06: Proceedings of the 2006 OOPSLA
workshop on eclipse technology eXchange, pages 16–20,
2006.

[63] Ant website. |http://ant.apache.org/|.
[64] Azureus website. |http://azureus.sourceforge.net/|.
[65] Eclipse website. |http://www.eclipse.org/|.
[66] NetBeans website. |http://www.netbeans.org/|.

6

|
|
|
|

	Introduction
	Ptolemy: A Brief Introduction
	Empirical Evaluation Approach
	Select Candidate Software Projects
	Select an initial version for candidate projects
	Use Concern Mining Techniques to Semi-automatically Identify Fragmented and Scattered Concerns for Modularization
	Use Ptolemy and Alternative II and AO Techniques to Modularize Identified Concerns
	Replay Changes on All Versions Using Version History
	Software Evolution Analysis and Metrics for Evaluation

	Conclusion
	References

