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Overview

» Motivation: Dynamic PCD Evaluation
» Approach: Decision-tree based Matching

» Technical Contributions:
» Formalization of the PCD Evaluation problem
» Algorithms using Decision-tree structures for faster
matching
» Use of implication relationships for partial evaluation of type
predicates
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Problem

Terminology
PCD Evaluation

a € A, the set of attributes
o € O,the set of operators
v € V,the setof values
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Problem

Terminology
PCD Evaluation

€ A,the set of attributes
o € O,the set of operators
€ V,the set of values

pred == (a,o,Vv)
fact == (a,v)
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Problem

Terminology
PCD Evaluation

a € A, the set of attributes
o € O,the set of operators
v € V,the setof values
pred = (a,o,v)
fact == (a,v)
PCD ::= pred
| (PCD)
|  pred && PCD
| pred|| PCD
join point := fact
|

fact && join point

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation



Problem .
Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

==, !:}

S<n
i
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Problem

Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

::,!:}

S<n
i

Example PCD
(modifier, ==, public) && (type, !=, void) &&
(name, ==, "Set")
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Problem

Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

::,!:}

S<n
i

Example PCD
(modifier, ==, public) && (type, !=, void) &&
(name, ==, "Set")

Example join point
(modifier, public) && (type, FElement) &&
(name, "Set")
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Problem

Terminology
PCD Evaluation

PCD

JP
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Problem

Terminology

PCD Evaluation

» 2 ways of viewing the problem

» PCDEval’

PCD1

JP2

JP4
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Overview
Partial Evaluation of Types

Our Approach

» Evaluation Algorithm overview
Order predicates for efficiency
Create PCD evaluation tree(s)
Add predicates to decision trees
Create links to parents

vV vy VvVyy
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Our Approach

Overview

Partial Evaluation of Types

Consider the following PCD: Pred1||(Pred2&& Pred3)

==

pred1

pred2
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Overview
Partial Evaluation of Types

Our Approach

» Order predicates for efficiency

» Modifiers are simple to match
» Makes other decision-trees disjoint (smaller)
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Overview
Partial Evaluation of Types

Our Approach

JP1

mod
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Our Approach CEE

Partial Evaluation of Types

» Goal: Reduce size of decision-trees
» |dea: Partially evaluate predicates
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Our Approach oG

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C
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» Known: B < C
» Evaluate: A< B,A<C
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Our Approach oG

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

» A<BAB<C—A<C
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Our Approach CEE

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

» A<BAB<C— A<C
» Partially Evaluate: A< B
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Evaluation

» Created implementation in Nu virtual machine

» Bind and Remove primitives for deploying/un-deploying
advice

» Synthetic micro-benchmark

» Measures time to Bind (add to trees) and match
» Varies type hierarchy depth
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Execution Time (micro-seconds)
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Execution Time (micro-seconds)
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Summary

Related Work

» Efficient Matching Techniques
» Dynamic Residue Evaluation
» Partial Evaluation Techniques
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Summary

Future Work

» Example Implementation(s)
» Real-world Evaluations
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Summary

» Motivation: Dynamic PCD Evaluation
» PCDs arrive dynamically
» PCDs might be removed later
» Matching the whole (loaded) system against a PCD is too
slow

» Approach: Decision-tree based Matching
» Order evaluations based on cost
» Partially evaluate wherever possible

» Technical Contributions:

» Formalization of the PCD Evaluation problem

» Algorithms using Decision-tree structures for faster
matching

» Use of implication relationships for partial evaluation of type
predicates

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation



Summary

Questions?

http://www.cs.liastate.edu/~nu/
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C.run

C1.run
C2.run
C3.run

class C {
public static void run() {
measure { Bind.. //to methods returning C1 }
measure { Bind.. //to methods returning C2 }
measure { Bind.. //to methods returning C3 }

measure { C1.testMethod }
measure { C2.testMethod }
measure { C3.testMethod }

}
public C testMethod () { return NULL }

}
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