A Decision Tree-based Approach to Dynamic

Pointcut Evaluation

Robert Dyer and Hridesh Rajan

Department of Computer Science
lowa State University
{rdyer,hridesh}@cs.iastate.edu

October 19, 2008

Overview

» Motivation: Dynamic PCD Evaluation
» Approach: Decision-tree based Matching

» Technical Contributions:
» Formalization of the PCD Evaluation problem
» Algorithms using Decision-tree structures for faster
matching
» Use of implication relationships for partial evaluation of type
predicates

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology
PCD Evaluation

a € A, the set of attributes
o € O,the set of operators
v € V,the setof values

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology
PCD Evaluation

€ A,the set of attributes
o € O,the set of operators
€ V,the set of values

pred == (a,o,Vv)
fact == (a,v)

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology
PCD Evaluation

a € A, the set of attributes
o € O,the set of operators
v € V,the setof values
pred = (a,o,v)
fact == (a,v)
PCD ::= pred
| (PCD)
| pred && PCD
| pred|| PCD
join point := fact
|

fact && join point

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem .
Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

==, !:}

S<n
i

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

::,!:}

S<n
i

Example PCD
(modifier, ==, public) && (type, !=, void) &&
(name, ==, "Set")

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology

PCD Evaluation

::= {modifier, type, name}
{v : v is a modifier, type or name in the program}

::,!:}

S<n
i

Example PCD
(modifier, ==, public) && (type, !=, void) &&
(name, ==, "Set")

Example join point
(modifier, public) && (type, FElement) &&
(name, "Set")

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology
PCD Evaluation

PCD

JP

Decision Tree-based amic PCD Evaluati

Problem

Terminology

PCD Evaluation

» 2 ways of viewing the problem

» PCDEval’

PCD1

JP2

JP4

Robert Dyer and Hridesh Rajan

Decision Tree-based Dynamic PCD Evaluation

Problem

Terminology

PCD Evaluation

» 2 ways of viewing the problem

» PCDEval

JP1

PCD1

PCD2

PCD4

Robert Dyer and Hridesh Rajan

Decision Tree-based Dynamic PCD Evaluation

Overview
Partial Evaluation of Types

Our Approach

» Evaluation Algorithm overview
Order predicates for efficiency
Create PCD evaluation tree(s)
Add predicates to decision trees
Create links to parents

vV vy VvVyy

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Our Approach

Overview

Partial Evaluation of Types

Consider the following PCD: Pred1||(Pred2&& Pred3)

==

pred1

pred2

Decision Tree-based Dynamic PCD Evaluation

Robert Dyer and Hridesh Rajan

Overview
Partial Evaluation of Types

Our Approach

» Order predicates for efficiency

» Modifiers are simple to match
» Makes other decision-trees disjoint (smaller)

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Overview
Partial Evaluation of Types

Our Approach

JP1

mod

yer and Hridesh Rajal

PCD

ression

; Expl_

rees

5
D=
S8
oLo
= OO
ek

1
g2

=

w

Join point

PCD
Expression
rees

Attribute
i Sub-decision
Trees

@ Join point

PCD
Expression
rees

Attribute
i Sub-decision
Trees

@ Join point

PCD
Expression
rees

Attribute
i Sub-decision
Trees

@ Join point

PCD
Expression
rees

Attribute
i Sub-decision
Trees

@ Join point

PCD
Expression
rees

Attribute
i Sub-decision
Trees

@ Join point

ression
rees

PCD

ol
»
LLi

Attribute
Sub-decision
Trees

Join point

ression
rees

£ PCD
) xq_

Trees

5
2
u-l
av
= D
75
Ab
=
W

Join point

T
<.} i
¥ . b
rM&W_ZUH_.XII_
_f-_dfm-}“
r
||m. ..-_... |||||||||||||||||||||
St m
3N m
Wl |
| esrsesnsenns 4_ “

ression
rees

£ PCD
) xq_

Trees

5
2
u-l
av
= D
75
Ab
=
W

_IIJ&”.II“ ===
1ol i
[b
rM&W_ZUH_.XII_
_f-_dfm-}“
R
X
g
e

Join point

ression
rees

£ PCD
) xq_

Trees

5
2
u-l
av
= D
75
Ab
=
W

_IIJ&”.II“ ===
1ol i
[b
rM&W_ZUH_.XII_
_f-_dfm-}“
R
X
g
e

Join point

ression
rees

£ PCD
) xq_

Trees

5
2
u-l
av
= D
75
Ab
=
W

_IIJ&”.II“ ===
1ol i
[b
rM&W_ZUH_.XII_
_f-_df“-}“
R
g
e

Join point

ression

| Expl_

PCD
rees

Attribute
Trees

Sub-decision

Join point

PCD

ression

; Expl_

rees

..-__,) -mA. o TTeevee
w' __.l_ _V
N
.q./mlujn
R
¥
“.oua,_b__,l_
78!

Attribute
Trees

Sub-decision

Join point

PCD

&&

ression

| Expl_

rees

"‘_ ------------
F
.q.lm-ujn
L

¥
B
" ||_Z| - _

Attribute
Trees

Sub-decision

Join point

&&

c
2
av$
089
0O
ol
x
w
i,
_ _ V
..ufm-}“
R
¥
ANk
3 rllf !

Attribute
Trees

Sub-decision

Join point

ression

Expl_

PCD
rees
Trees

Join point

% Attribute
Sub-decision

i m
Aol m
_ -~ |_z_ [m “
Wl |

“ ".A 4_ “

ression

; Expl_

PCD
rees

&&

Attribute
Trees

Sub-decision

Join point

Our Approach CEE

Partial Evaluation of Types

» Goal: Reduce size of decision-trees
» |dea: Partially evaluate predicates

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Our Approach oG

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

Decision Tree-based amic PCD Evaluatio

Our Approach oG

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

» A<BAB<C

Decision Tree-based amic PCD Evaluatio

Our Approach oG

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

» A<BAB<C—A<C

Decision Tree-based amic PCD Evaluation

Our Approach CEE

Partial Evaluation of Types

» Known: B < C
» Evaluate: A< B,A<C

» A<BAB<C— A<C
» Partially Evaluate: A< B

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Evaluation

» Created implementation in Nu virtual machine

» Bind and Remove primitives for deploying/un-deploying
advice

» Synthetic micro-benchmark

» Measures time to Bind (add to trees) and match
» Varies type hierarchy depth

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Evaluation

yer and Hridesh Rajal

Execution Time (micro-seconds)

9000 —+

8000

7000

6000 —+

5000

4000

3000 -

2000

1000 -

Adding (max)
- -k - Adding (avg)
Adding {min}
Nodes

s
L

Type Tree Depth

r 7000

r 6000

r 5000

r 4000

r 3000

r 2000

r 1000

Number of Distinct PCDs

Old matching code - (~40us constant)

Execution Time (micro-seconds)

12000 —

Match {max)
- -k - Match (avg) 1

10000 + Match {min)

Nodes
8000 —+
8000 +
4000 +
2000 + |

0 ’".”"‘-“.”- t
1 2 3 4 5 6 7

Type Tree Depth

r 7000

r 6000

r 6000

r 4000

r 3000

r 2000

r 1000

Number of Distinct PCDs

Old matching code - average case 3-50x slower
worst case 3-88x slower

Summary

Related Work

» Efficient Matching Techniques
» Dynamic Residue Evaluation
» Partial Evaluation Techniques

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Summary

Future Work

» Example Implementation(s)
» Real-world Evaluations

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Summary

» Motivation: Dynamic PCD Evaluation
» PCDs arrive dynamically
» PCDs might be removed later
» Matching the whole (loaded) system against a PCD is too
slow

» Approach: Decision-tree based Matching
» Order evaluations based on cost
» Partially evaluate wherever possible

» Technical Contributions:

» Formalization of the PCD Evaluation problem

» Algorithms using Decision-tree structures for faster
matching

» Use of implication relationships for partial evaluation of type
predicates

Robert Dyer and Hridesh Rajan Decision Tree-based Dynamic PCD Evaluation

Summary

Questions?

http://www.cs.liastate.edu/~nu/

Decision Tree-based amic PCD Evaluation

http://www.cs.iastate.edu/~nu/

o

>

A

C.run

C1.run
C2.run
C3.run

class C {
public static void run() {
measure { Bind.. //to methods returning C1 }
measure { Bind.. //to methods returning C2 }
measure { Bind.. //to methods returning C3 }

measure { C1.testMethod }
measure { C2.testMethod }
measure { C3.testMethod }

}
public C testMethod () { return NULL }

}

	Overview
	Problem
	Terminology
	PCD Evaluation

	Our Approach
	Overview
	Partial Evaluation of Types

	Evaluation
	Summary
	Appendix

